These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 3417351)
61. Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. Reizer J; Novotny MJ; Hengstenberg W; Saier MH J Bacteriol; 1984 Oct; 160(1):333-40. PubMed ID: 6434522 [TBL] [Abstract][Full Text] [Related]
62. Phosphoenolpyruvate-sugar phosphotransferase transport system of Streptococcus mutans: purification of HPr and enzyme I and determination of their intracellular concentrations by rocket immunoelectrophoresis. Thibault L; Vadeboncoeur C Infect Immun; 1985 Dec; 50(3):817-25. PubMed ID: 4066033 [TBL] [Abstract][Full Text] [Related]
63. Galactose metabolism by Streptococcus mutans. Abranches J; Chen YY; Burne RA Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549 [TBL] [Abstract][Full Text] [Related]
64. The mannitol-specific enzyme II (mtlA) gene and the mtlR gene of the PTS of Streptococcus mutans. Honeyman AL; Curtiss R Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1565-1572. PubMed ID: 10878121 [TBL] [Abstract][Full Text] [Related]
65. Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis. Romano AH; Saier MH; Harriott OT; Reizer J J Bacteriol; 1990 Dec; 172(12):6741-8. PubMed ID: 2123855 [TBL] [Abstract][Full Text] [Related]
66. The phosphotransferase system (PTS) of Streptomyces coelicolor identification and biochemical analysis of a histidine phosphocarrier protein HPr encoded by the gene ptsH. Parche S; Schmid R; Titgemeyer F Eur J Biochem; 1999 Oct; 265(1):308-17. PubMed ID: 10491187 [TBL] [Abstract][Full Text] [Related]
67. Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Miyasawa-Hori H; Aizawa S; Takahashi N Oral Microbiol Immunol; 2006 Aug; 21(4):201-5. PubMed ID: 16842502 [TBL] [Abstract][Full Text] [Related]
68. Replacement of isoleucine-47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serine-46. Gauthier M; Brochu D; Eltis LD; Thomas S; Vadeboncoeur C Mol Microbiol; 1997 Aug; 25(4):695-705. PubMed ID: 9379899 [TBL] [Abstract][Full Text] [Related]
69. Sorbitol transport and metabolism by oral streptococci. Svensäter G Swed Dent J Suppl; 1991; 79():1-103. PubMed ID: 1896926 [TBL] [Abstract][Full Text] [Related]
70. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related]
71. Regulation of hexitol catabolism in Streptococcus mutans. Dills SS; Seno S J Bacteriol; 1983 Feb; 153(2):861-6. PubMed ID: 6401708 [TBL] [Abstract][Full Text] [Related]
72. The repressible metabolism of sorbitol (D-glucitol) by intact cells of the oral plaque-forming bacterium Streptococcus mutans. Slee AM; Tanzer JM Arch Oral Biol; 1983; 28(9):839-45. PubMed ID: 6579915 [TBL] [Abstract][Full Text] [Related]
73. Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR. Vujanac M; Iyer VS; Sengupta M; Ajdic D Mol Oral Microbiol; 2015 Aug; 30(4):280-94. PubMed ID: 25580872 [TBL] [Abstract][Full Text] [Related]
74. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation. Reizer J; Saier MH; Deutscher J; Grenier F; Thompson J; Hengstenberg W Crit Rev Microbiol; 1988; 15(4):297-338. PubMed ID: 3060316 [TBL] [Abstract][Full Text] [Related]
75. Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. Stock JB; Waygood EB; Meadow ND; Postma PW; Roseman S J Biol Chem; 1982 Dec; 257(23):14543-52. PubMed ID: 6292227 [TBL] [Abstract][Full Text] [Related]
76. The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains. Gonzy-Tréboul G; de Waard JH; Zagorec M; Postma PW Mol Microbiol; 1991 May; 5(5):1241-9. PubMed ID: 1956301 [TBL] [Abstract][Full Text] [Related]
77. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Jeckelmann JM; Erni B Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989 [TBL] [Abstract][Full Text] [Related]
78. Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. Reizer J; Sutrina SL; Wu LF; Deutscher J; Reddy P; Saier MH J Biol Chem; 1992 May; 267(13):9158-69. PubMed ID: 1577753 [TBL] [Abstract][Full Text] [Related]
79. Histidine phosphocarrier protein regulates pyruvate kinase A activity in response to glucose in Vibrio vulnificus. Kim HM; Park YH; Yoon CK; Seok YJ Mol Microbiol; 2015 Apr; 96(2):293-305. PubMed ID: 25598011 [TBL] [Abstract][Full Text] [Related]
80. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]