These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 3417352)

  • 1. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora.
    Wilson KH; Perini F
    Infect Immun; 1988 Oct; 56(10):2610-4. PubMed ID: 3417352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Clostridium difficile and Escherichia coli with microfloras in continuous-flow cultures and gnotobiotic mice.
    Wilson KH; Freter R
    Infect Immun; 1986 Nov; 54(2):354-8. PubMed ID: 3533778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Transfer of the cecal flora of the hamster to the germfree C3H mouse: use of this model to study the flora of the anti-Clostridium difficile barrier].
    Su WJ; Bourlioux P; Bournaud M; Besnier MO; Fourniat J
    Can J Microbiol; 1986 Feb; 32(2):132-6. PubMed ID: 3516351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice.
    Su WJ; Waechter MJ; Bourlioux P; Dolegeal M; Fourniat J; Mahuzier G
    Infect Immun; 1987 Jul; 55(7):1686-91. PubMed ID: 3596806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anaerobic continuous-flow culture model of interactions between intestinal microflora and Candida albicans.
    Kennedy MJ; Rogers AL; Yancey RJ
    Mycopathologia; 1988 Sep; 103(3):125-34. PubMed ID: 3057377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora.
    Freter R; Stauffer E; Cleven D; Holdeman LV; Moore WE
    Infect Immun; 1983 Feb; 39(2):666-75. PubMed ID: 6339387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gnotobiotic models for study of the microbial ecology of Clostridium difficile and Escherichia coli.
    Wilson KH; Sheagren JN; Freter R; Weatherbee L; Lyerly D
    J Infect Dis; 1986 Mar; 153(3):547-51. PubMed ID: 3512730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibition of Clostridium difficile by intestinal flora of infant faeces in continuous flow culture.
    Yamamoto-Osaki T; Kamiya S; Sawamura S; Kai M; Ozawa A
    J Med Microbiol; 1994 Mar; 40(3):179-87. PubMed ID: 8114067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of Clostridium difficile by normal hamster cecal flora and prevention of antibiotic-associated cecitis.
    Wilson KH; Silva J; Fekety FR
    Infect Immun; 1981 Nov; 34(2):626-8. PubMed ID: 7309245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation of an experimental animal model allowing the study of the cecal microflora in the hamster, antagonistic to clostridium difficile].
    Su WJ; Bourlioux P; Bournaud M; Besnier MO; Fourniat J
    Ann Inst Pasteur Microbiol (1985); 1986; 137A(1):89-96. PubMed ID: 3674782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora.
    Freter R; Brickner H; Botney M; Cleven D; Aranki A
    Infect Immun; 1983 Feb; 39(2):676-85. PubMed ID: 6339388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Clostridium cocleatum strain involved in an anti-Clostridium difficile barrier effect and determination of its mucin-degrading enzymes.
    Boureau H; Decré D; Carlier JP; Guichet C; Bourlioux P
    Res Microbiol; 1993 Jun; 144(5):405-10. PubMed ID: 7504316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of Clostridium difficile toxin in guinea pigs with penicillin-associated colitis.
    Rothman SW
    Med Microbiol Immunol; 1981; 169(3):187-96. PubMed ID: 7254132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immediate postnatal inoculation of a microbial barrier to prevent neonatal diarrhea induced by Clostridium difficile in young conventional and gnotobiotic hares.
    Dubos F; Martinet L; Dabard J; Ducluzeau R
    Am J Vet Res; 1984 Jun; 45(6):1242-4. PubMed ID: 6742589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fluoroquinolone treatment on growth of and toxin production by epidemic and nonepidemic clostridium difficile strains in the cecal contents of mice.
    Adams DA; Riggs MM; Donskey CJ
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2674-8. PubMed ID: 17562807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for clostridial implication in necrotizing enterocolitis through bacterial fermentation in a gnotobiotic quail model.
    Waligora-Dupriet AJ; Dugay A; Auzeil N; Huerre M; Butel MJ
    Pediatr Res; 2005 Oct; 58(4):629-35. PubMed ID: 16189185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium difficile toxins and enterococcal translocation in vivo and in vitro.
    Feltis BA; Garni RM; Wells CL
    J Surg Res; 2001 May; 97(1):97-102. PubMed ID: 11319888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of radiolabelled substrates by batch cultures of caecal microflora maintained in a continuous-flow culture.
    Hume ME; Nisbet DJ; Scanlan CM; Corrier DE; DeLoach JR
    J Appl Bacteriol; 1995 Jun; 78(6):677-83. PubMed ID: 7615424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population dynamics of ingested Clostridium difficile in the gastrointestinal tract of the Syrian hamster.
    Wilson KH; Sheagren JN; Freter R
    J Infect Dis; 1985 Feb; 151(2):355-61. PubMed ID: 3968453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of specific pathogen-free (SPF) rat colonies using gnotobiotic techniques.
    Yanabe M; Shibuya M; Gonda T; Asai H; Tanaka T; Sudou K; Narita T; Itoh K
    Exp Anim; 2001 Jul; 50(4):293-8. PubMed ID: 11515091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.