These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34174170)

  • 1. Ambipolar Charge Storage in Type-I Core/Shell Semiconductor Quantum Dots toward Optoelectronic Transistor-Based Memories.
    Hu H; Wen G; Wen J; Huang LB; Zhao M; Wu H; Sun Z
    Adv Sci (Weinh); 2021 Aug; 8(16):e2100513. PubMed ID: 34174170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Tunneling Dielectric Layer Free Floating Gate Nonvolatile Memory Employing Type-I Core-Shell Quantum Dots as Discrete Charge-Trapping/Tunneling Centers.
    Yan C; Wen J; Lin P; Sun Z
    Small; 2019 Jan; 15(1):e1804156. PubMed ID: 30480357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Memristive Devices Based on InP/ZnSe/ZnS Core-Multishell Quantum Dot Nanocomposites.
    Kim DH; Wu C; Park DH; Kim WK; Seo HW; Kim SW; Kim TW
    ACS Appl Mater Interfaces; 2018 May; 10(17):14843-14849. PubMed ID: 29631394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots.
    Zeng S; Li Z; Tan W; Si J; Li Y; Hou X
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots.
    Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guilty as Charged: The Role of Undercoordinated Indium in Electron-Charged Indium Phosphide Quantum Dots.
    Stam M; du Fossé I; Infante I; Houtepen AJ
    ACS Nano; 2023 Sep; 17(18):18576-18583. PubMed ID: 37712414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trap-Assisted Charge Storage in Titania Nanocrystals toward Optoelectronic Nonvolatile Memory.
    Sun Z; Li J; Liu C; Yang S; Yan F
    Nano Lett; 2021 Jan; 21(1):723-730. PubMed ID: 33373246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices.
    Zhang W; Zhuang W; Liu R; Xing X; Qu X; Liu H; Xu B; Wang K; Sun XW
    ACS Omega; 2019 Nov; 4(21):18961-18968. PubMed ID: 31763517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Brightness Matched Indium Phosphide Quantum Dots.
    Toufanian R; Chern M; Kong VH; Dennis AM
    Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-functional optoelectronic memories based on ternary hybrid floating gate layers.
    Li Q; Li T; Zhang Y; Zhao H; Li J; Yao J
    Nanoscale; 2021 Feb; 13(5):3295-3303. PubMed ID: 33533792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell.
    Koh S; Lee H; Lee T; Park K; Kim WJ; Lee DC
    J Chem Phys; 2019 Oct; 151(14):144704. PubMed ID: 31615236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Synaptic Transistors with Environmentally Friendly Core/Shell Quantum Dots for Wavelength-Selective Memory and Neuromorphic Functions.
    Guo Z; Zhang J; Wang J; Liu X; Guo P; Sun T; Li L; Gao H; Xiong L; Huang J
    Nano Lett; 2024 May; 24(20):6139-6147. PubMed ID: 38722705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Charging Effect on the Optical Properties of InP/ZnSe/ZnS Quantum Dots.
    Park J; Won YH; Kim T; Jang E; Kim D
    Small; 2020 Oct; 16(41):e2003542. PubMed ID: 32964676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Electron and Slow Hole Relaxation in InP-Based Colloidal Quantum Dots.
    Richter AF; Binder M; Bohn BJ; Grumbach N; Neyshtadt S; Urban AS; Feldmann J
    ACS Nano; 2019 Dec; 13(12):14408-14415. PubMed ID: 31790203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the Optoelectronic Properties of Quasi-type II CuInS
    Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories.
    Jeong YJ; Yun DJ; Noh SH; Park CE; Jang J
    ACS Nano; 2018 Aug; 12(8):7701-7709. PubMed ID: 30024727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications.
    Ramasamy P; Kim B; Lee MS; Lee JS
    Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.