These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34174269)

  • 21. The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress.
    Walton PA; Brees C; Lismont C; Apanasets O; Fransen M
    Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1833-1843. PubMed ID: 28760655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling.
    Wang J; Liu Z; Feng X; Gao S; Xu S; Liu P
    Arch Biochem Biophys; 2014 Nov; 562():22-30. PubMed ID: 25151306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. JNK signaling-dependent regulation of histone acetylation are involved in anacardic acid alleviates cardiomyocyte hypertrophy induced by phenylephrine.
    Peng B; Peng C; Luo X; Wu S; Mao Q; Zhang H; Han X
    PLoS One; 2021; 16(12):e0261388. PubMed ID: 34914791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opposing actions of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) in regulating microtubule stabilization during cardiac hypertrophy.
    Ng DC; Ng IH; Yeap YY; Badrian B; Tsoutsman T; McMullen JR; Semsarian C; Bogoyevitch MA
    J Biol Chem; 2011 Jan; 286(2):1576-87. PubMed ID: 21056972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fisetin inhibits cardiac hypertrophy by suppressing oxidative stress.
    Dong B; Liu C; Xue R; Wang Y; Sun Y; Liang Z; Fan W; Jiang J; Zhao J; Su Q; Dai G; Dong Y; Huang H
    J Nutr Biochem; 2018 Dec; 62():221-229. PubMed ID: 30312797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway.
    Fang X; Liu Y; Lu J; Hong H; Yuan J; Zhang Y; Wang P; Liu P; Ye J
    Naunyn Schmiedebergs Arch Pharmacol; 2018 Dec; 391(12):1373-1385. PubMed ID: 30132020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulates G-protein-coupled receptor kinase 5 (GRK5)-induced cardiac hypertrophy
    Yeh ST; Zambrano CM; Koch WJ; Purcell NH
    J Biol Chem; 2018 May; 293(21):8056-8064. PubMed ID: 29628444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIMF (Hypoxia-Induced Mitogenic Factor)-IL (Interleukin)-6 Signaling Mediates Cardiomyocyte-Fibroblast Crosstalk to Promote Cardiac Hypertrophy and Fibrosis.
    Kumar S; Wang G; Zheng N; Cheng W; Ouyang K; Lin H; Liao Y; Liu J
    Hypertension; 2019 May; 73(5):1058-1070. PubMed ID: 30827145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy.
    Gao S; Liu XP; Wei LH; Lu J; Liu P
    Can J Physiol Pharmacol; 2018 Apr; 96(4):352-358. PubMed ID: 28910549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial Disruption Is Involved in the Effect of Nuclear Factor of Activated T cells, Cytoplasmic 4 on Aggravating Cardiomyocyte Hypertrophy.
    Liu X; Gao S; Gao H; Jiang X; Wei Q
    J Cardiovasc Pharmacol; 2021 May; 77(5):557-569. PubMed ID: 33951694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox Regulation of Cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) Controls p38-MAPK (Mitogen-Activated Protein Kinase) and Orchestrates Cardiac Remodeling to Hypertension.
    Meijles DN; Cull JJ; Markou T; Cooper STE; Haines ZHR; Fuller SJ; O'Gara P; Sheppard MN; Harding SE; Sugden PH; Clerk A
    Hypertension; 2020 Oct; 76(4):1208-1218. PubMed ID: 32903101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role for the extracellular signal-regulated kinase and p38 mitogen-activated protein kinases in interleukin-1 beta-stimulated delayed signal tranducer and activator of transcription 3 activation, atrial natriuretic factor expression, and cardiac myocyte morphology.
    Ng DC; Long CS; Bogoyevitch MA
    J Biol Chem; 2001 Aug; 276(31):29490-8. PubMed ID: 11382751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway.
    Li RL; Wu SS; Wu Y; Wang XX; Chen HY; Xin JJ; Li H; Lan J; Xue KY; Li X; Zhuo CL; Cai YY; He JH; Zhang HY; Tang CS; Wang W; Jiang W
    J Mol Cell Cardiol; 2018 Aug; 121():242-255. PubMed ID: 30053525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart.
    Mir SA; Chatterjee A; Mitra A; Pathak K; Mahata SK; Sarkar S
    J Biol Chem; 2012 Jan; 287(4):2666-77. PubMed ID: 22157761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tyrosine phosphorylation of RACK1 triggers cardiomyocyte hypertrophy by regulating the interaction between p300 and GATA4.
    Suzuki H; Katanasaka Y; Sunagawa Y; Miyazaki Y; Funamoto M; Wada H; Hasegawa K; Morimoto T
    Biochim Biophys Acta; 2016 Sep; 1862(9):1544-57. PubMed ID: 27208796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Propofol ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction via heme oxygenase-1/signal transducer and activator of transcription 3 signaling pathway in rats.
    Xu J; Li H; Irwin MG; Xia ZY; Mao X; Lei S; Wong GT; Hung V; Cheung CW; Fang X; Clanachan AS; Xia Z
    Crit Care Med; 2014 Aug; 42(8):e583-94. PubMed ID: 24810525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PARP1 interacts with STAT3 and retains active phosphorylated-STAT3 in nucleus during pathological myocardial hypertrophy.
    Wang L; Li Z; Tan Y; Li Q; Yang H; Wang P; Lu J; Liu P
    Mol Cell Endocrinol; 2018 Oct; 474():137-150. PubMed ID: 29501586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TNIP3 protects against pathological cardiac hypertrophy by stabilizing STAT1.
    Shi H; Yu Y; Li D; Zhu K; Cheng X; Ma T; Tao Z; Hong Y; Liu Z; Zhou S; Zhang J; Chen Y; Zhang XJ; Zhang P; Li H
    Cell Death Dis; 2024 Jun; 15(6):450. PubMed ID: 38926347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitin-specific protease 19 blunts pathological cardiac hypertrophy via inhibition of the TAK1-dependent pathway.
    Miao R; Lu Y; He X; Liu X; Chen Z; Wang J
    J Cell Mol Med; 2020 Sep; 24(18):10946-10957. PubMed ID: 32798288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decreased KCNE2 Expression Participates in the Development of Cardiac Hypertrophy by Regulation of Calcineurin-NFAT (Nuclear Factor of Activated T Cells) and Mitogen-Activated Protein Kinase Pathways.
    Liu W; Deng J; Ding W; Wang G; Shen Y; Zheng J; Zhang X; Luo Y; Lv C; Wang Y; Chen L; Yan D; Boudreau RL; Song LS; Liu J
    Circ Heart Fail; 2017 Jun; 10(6):. PubMed ID: 28611128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.