These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 34174616)
1. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Swanson L; Li T; Rinnan R Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616 [TBL] [Abstract][Full Text] [Related]
2. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. Rieksta J; Li T; Davie-Martin CL; Aeppli LCB; Høye TT; Rinnan R Plant Environ Interact; 2023 Feb; 4(1):23-35. PubMed ID: 37284597 [TBL] [Abstract][Full Text] [Related]
3. Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs. Simin T; Davie-Martin CL; Petersen J; Høye TT; Rinnan R Sci Total Environ; 2022 Sep; 837():155783. PubMed ID: 35537508 [TBL] [Abstract][Full Text] [Related]
4. Origin of volatile organic compound emissions from subarctic tundra under global warming. Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145 [TBL] [Abstract][Full Text] [Related]
5. Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. Li T; Holst T; Michelsen A; Rinnan R Nat Plants; 2019 Jun; 5(6):568-574. PubMed ID: 31182843 [TBL] [Abstract][Full Text] [Related]
6. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223 [TBL] [Abstract][Full Text] [Related]
7. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra. Rieksta J; Li T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Oct; 27(20):5030-5042. PubMed ID: 34185349 [TBL] [Abstract][Full Text] [Related]
8. Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. Baggesen N; Li T; Seco R; Holst T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Jun; 27(12):2928-2944. PubMed ID: 33709612 [TBL] [Abstract][Full Text] [Related]
9. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient. Svendsen SH; Lindwall F; Michelsen A; Rinnan R Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736 [TBL] [Abstract][Full Text] [Related]
10. Warming increases isoprene emissions from an arctic fen. Lindwall F; Svendsen SS; Nielsen CS; Michelsen A; Rinnan R Sci Total Environ; 2016 May; 553():297-304. PubMed ID: 26933965 [TBL] [Abstract][Full Text] [Related]
11. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen. Maja MM; Kasurinen A; Holopainen T; Julkunen-Tiitto R; Holopainen JK Sci Total Environ; 2016 Mar; 547():39-47. PubMed ID: 26780130 [TBL] [Abstract][Full Text] [Related]
12. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. Faubert P; Tiiva P; Rinnan Å; Michelsen A; Holopainen JK; Rinnan R New Phytol; 2010 Jul; 187(1):199-208. PubMed ID: 20456056 [TBL] [Abstract][Full Text] [Related]
13. Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata). Ryde I; Li T; Rieksta J; Dos Santos BM; Neilson EHJ; Gericke O; Jepsen JU; Bork LRH; Holm HS; Rinnan R Tree Physiol; 2021 Jun; 41(6):1019-1033. PubMed ID: 33601421 [TBL] [Abstract][Full Text] [Related]
14. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light. Lindwall F; Faubert P; Rinnan R PLoS One; 2015; 10(4):e0123610. PubMed ID: 25897519 [TBL] [Abstract][Full Text] [Related]
15. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix. Hu B; Jarosch AM; Gauder M; Graeff-Hönninger S; Schnitzler JP; Grote R; Rennenberg H; Kreuzwieser J Environ Pollut; 2018 Jun; 237():205-217. PubMed ID: 29486454 [TBL] [Abstract][Full Text] [Related]
16. Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra. Angot H; McErlean K; Hu L; Millet DB; Hueber J; Cui K; Moss J; Wielgasz C; Milligan T; Ketcherside D; Bret-Harte MS; Helmig D Biogeosciences; 2020; 17(23):6219-6236. PubMed ID: 35222652 [TBL] [Abstract][Full Text] [Related]
17. Volatile organic compound emission in tundra shrubs - Dependence on species characteristics and the near-surface environment. Simin T; Tang J; Holst T; Rinnan R Environ Exp Bot; 2021 Apr; 184():104387. PubMed ID: 33814646 [TBL] [Abstract][Full Text] [Related]
18. Strong isoprene emission response to temperature in tundra vegetation. Seco R; Holst T; Davie-Martin CL; Simin T; Guenther A; Pirk N; Rinne J; Rinnan R Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2118014119. PubMed ID: 36095176 [TBL] [Abstract][Full Text] [Related]
19. Increasing shrub damage by invertebrate herbivores in the warming and drying tundra of West Greenland. Finger-Higgens R; DeSiervo M; Ayres MP; Virginia RA Oecologia; 2021 Apr; 195(4):995-1005. PubMed ID: 33786709 [TBL] [Abstract][Full Text] [Related]
20. Volatile organic compounds emitted from silver birch of different provenances across a latitudinal gradient in Finland. Maja MM; Kasurinen A; Holopainen T; Kontunen-Soppela S; Oksanen E; Holopainen JK Tree Physiol; 2015 Sep; 35(9):975-86. PubMed ID: 26093370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]