These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34174680)
21. 3D-Printed Bioactive Ca Yang C; Wang X; Ma B; Zhu H; Huan Z; Ma N; Wu C; Chang J ACS Appl Mater Interfaces; 2017 Feb; 9(7):5757-5767. PubMed ID: 28117976 [TBL] [Abstract][Full Text] [Related]
22. Bone 'spackling' paste: Mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold. Guzzo CM; Nychka JA J Mech Behav Biomed Mater; 2020 Dec; 112():103958. PubMed ID: 32841832 [TBL] [Abstract][Full Text] [Related]
23. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. Lin YH; Chiu YC; Shen YF; Wu YA; Shie MY J Mater Sci Mater Med; 2017 Dec; 29(1):11. PubMed ID: 29282550 [TBL] [Abstract][Full Text] [Related]
24. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds. Zhao L; Wu C; Lin K; Chang J Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146 [TBL] [Abstract][Full Text] [Related]
25. In vitro degradation and angiogenesis of the porous calcium silicate-gelatin composite scaffold. Ho CC; Huang SC; Wei CK; Ding SJ J Mater Chem B; 2016 Jan; 4(3):505-512. PubMed ID: 32263214 [TBL] [Abstract][Full Text] [Related]
26. The Characteristics of Mineral Trioxide Aggregate/Polycaprolactone 3-dimensional Scaffold with Osteogenesis Properties for Tissue Regeneration. Chiu YC; Fang HY; Hsu TT; Lin CY; Shie MY J Endod; 2017 Jun; 43(6):923-929. PubMed ID: 28389072 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972 [TBL] [Abstract][Full Text] [Related]
28. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Zhang H; Ye XJ; Li JS Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959 [TBL] [Abstract][Full Text] [Related]
29. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating. Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722 [TBL] [Abstract][Full Text] [Related]
30. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Aparicio C; Fava F; Fabbri P; Taddei P; Prati C Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():163-181. PubMed ID: 29025644 [TBL] [Abstract][Full Text] [Related]
31. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
32. Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique. Dong X; Heidari A; Mansouri A; Hao WS; Dehghani M; Saber-Samandari S; Toghraie D; Khandan A J Mech Behav Biomed Mater; 2021 Sep; 121():104643. PubMed ID: 34139482 [TBL] [Abstract][Full Text] [Related]
33. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Dunne N Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():975-986. PubMed ID: 30274136 [TBL] [Abstract][Full Text] [Related]
34. In vitro physicochemical properties, osteogenic activity, and immunocompatibility of calcium silicate-gelatin bone grafts for load-bearing applications. Ding SJ; Shie MY; Wei CK ACS Appl Mater Interfaces; 2011 Oct; 3(10):4142-53. PubMed ID: 21942767 [TBL] [Abstract][Full Text] [Related]
35. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Wu C; Ramaswamy Y; Boughton P; Zreiqat H Acta Biomater; 2008 Mar; 4(2):343-53. PubMed ID: 17921076 [TBL] [Abstract][Full Text] [Related]
36. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Zhou Z; Buchanan F; Mitchell C; Dunne N Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346 [TBL] [Abstract][Full Text] [Related]
37. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Liu W; Zhai D; Huan Z; Wu C; Chang J Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099 [TBL] [Abstract][Full Text] [Related]
38. 3D-Printed Polycaprolactone-Based Containing Calcium Zirconium Silicate: Bioactive Scaffold for Accelerating Bone Regeneration. Emadi H; Baghani M; Masoudi Rad M; Hoomehr B; Baniassadi M; Lotfian S Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794582 [TBL] [Abstract][Full Text] [Related]
39. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics. Pu Y; Huang Y; Qi S; Chen C; Seo HJ Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():126-30. PubMed ID: 26117746 [TBL] [Abstract][Full Text] [Related]
40. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]