These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34174680)

  • 41. Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering.
    Dalgic AD; Alshemary AZ; Tezcaner A; Keskin D; Evis Z
    J Biomater Appl; 2018 May; 32(10):1392-1405. PubMed ID: 29544381
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds.
    Shuai C; Guo W; Gao C; Yang Y; Xu Y; Liu L; Qin T; Sun H; Yang S; Feng P; Wu P
    Polymers (Basel); 2017 May; 9(5):. PubMed ID: 30970854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels.
    Han Y; Zeng Q; Li H; Chang J
    Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of the sintering temperature on the mechanical behavior of β-tricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method.
    de Siqueira L; de Paula CG; Gouveia RF; Motisuke M; de Sousa Trichês E
    J Mech Behav Biomed Mater; 2019 Feb; 90():635-643. PubMed ID: 30502672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of pore size in bone regeneration using polydopamine-laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mould printing technology.
    Lee DJ; Kwon J; Kim YI; Wang X; Wu TJ; Lee YT; Kim S; Miguez P; Ko CC
    Orthod Craniofac Res; 2019 May; 22 Suppl 1(Suppl 1):127-133. PubMed ID: 31074145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies.
    Velasquez P; Luklinska ZB; Meseguer-Olmo L; Mate-Sanchez de Val JE; Delgado-Ruiz RA; Calvo-Guirado JL; Ramirez-Fernandez MP; de Aza PN
    J Biomed Mater Res A; 2013 Jul; 101(7):1943-54. PubMed ID: 23225787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds.
    Meininger S; Moseke C; Spatz K; März E; Blum C; Ewald A; Vorndran E
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1145-1158. PubMed ID: 30812998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices.
    Wei CK; Ding SJ
    J Mech Behav Biomed Mater; 2016 Sep; 62():366-383. PubMed ID: 27254281
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement.
    Kao CT; Huang TH; Chen YJ; Hung CJ; Lin CC; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():126-34. PubMed ID: 25175197
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro.
    Huang MH; Kao CT; Chen YW; Hsu TT; Shieh DE; Huang TH; Shie MY
    J Mater Sci Mater Med; 2015 Apr; 26(4):161. PubMed ID: 25786397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.
    Zocca A; Elsayed H; Bernardo E; Gomes CM; Lopez-Heredia MA; Knabe C; Colombo P; Günster J
    Biofabrication; 2015 May; 7(2):025008. PubMed ID: 26000907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.
    Gandolfi MG; Ciapetti G; Taddei P; Perut F; Tinti A; Cardoso MV; Van Meerbeek B; Prati C
    Dent Mater; 2010 Oct; 26(10):974-92. PubMed ID: 20655582
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate.
    Su CC; Kao CT; Hung CJ; Chen YJ; Huang TH; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():156-63. PubMed ID: 24582235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation and in vivo evaluation of a silicate-based composite bone cement.
    Ma B; Huan Z; Xu C; Ma N; Zhu H; Zhong J; Chang J
    J Biomater Appl; 2017 Aug; 32(2):257-264. PubMed ID: 28622750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioactive composite bone cement based on α-tricalcium phosphate/tricalcium silicate.
    Morejón-Alonso L; Ferreira OJ; Carrodeguas RG; dos Santos LA
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):94-102. PubMed ID: 22006674
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developing a biodegradable tricalcium silicate/glucono-delta-lactone/calcium sulfate dihydrate composite cement with high preliminary mechanical property for bone filling.
    Ding Z; Xi W; Ji M; Chen H; Zhang Q; Yan Y
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111621. PubMed ID: 33321663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells.
    Huang TH; Kao CT; Shen YF; Lin YT; Liu YT; Yen SY; Ho CC
    J Mater Sci Mater Med; 2019 Jun; 30(6):68. PubMed ID: 31165270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone neoformation of a novel porous resorbable Si-Ca-P-based ceramic with osteoconductive properties: physical and mechanical characterization, histological and histomorphometric study.
    De Aza PN; Mate-Sanchez de Val JE; Baudin C; Perez Albacete-Martínez C; Armijo Salto A; Calvo-Guirado JL
    Clin Oral Implants Res; 2016 Nov; 27(11):1368-1375. PubMed ID: 26775798
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application.
    Panahi F; Rabiee SM; Shidpour R
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():631-641. PubMed ID: 28866210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.