BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34175222)

  • 1. Automation in radiotherapy treatment planning: Examples of use in clinical practice and future trends for a complete automated workflow.
    Meyer P; Biston MC; Khamphan C; Marghani T; Mazurier J; Bodez V; Fezzani L; Rigaud PA; Sidorski G; Simon L; Robert C
    Cancer Radiother; 2021 Oct; 25(6-7):617-622. PubMed ID: 34175222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning.
    Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C
    Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated contouring and planning pipeline for hippocampal-avoidant whole-brain radiotherapy.
    Feng CH; Cornell M; Moore KL; Karunamuni R; Seibert TM
    Radiat Oncol; 2020 Oct; 15(1):251. PubMed ID: 33126894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future.
    Wang C; Zhu X; Hong JC; Zheng D
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819873922. PubMed ID: 31495281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implement a knowledge-based automated dose volume histogram prediction module in Pinnacle
    Xu H; Lu J; Wang J; Fan J; Hu W
    J Appl Clin Med Phys; 2019 Aug; 20(8):134-140. PubMed ID: 31343821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique.
    Fan J; Wang J; Chen Z; Hu C; Zhang Z; Hu W
    Med Phys; 2019 Jan; 46(1):370-381. PubMed ID: 30383300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical implementation of deep-learning based auto-contouring tools-Experience of three French radiotherapy centers.
    Robert C; Munoz A; Moreau D; Mazurier J; Sidorski G; Gasnier A; Beldjoudi G; Grégoire V; Deutsch E; Meyer P; Simon L
    Cancer Radiother; 2021 Oct; 25(6-7):607-616. PubMed ID: 34389243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated treatment planning of postmastectomy radiotherapy.
    Kisling K; Zhang L; Shaitelman SF; Anderson D; Thebe T; Yang J; Balter PA; Howell RM; Jhingran A; Schmeler K; Simonds H; du Toit M; Trauernicht C; Burger H; Botha K; Joubert N; Beadle BM; Court L
    Med Phys; 2019 Sep; 46(9):3767-3775. PubMed ID: 31077593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalized automated treatment planning for breast plus locoregional lymph nodes using Hybrid RapidArc.
    van Duren-Koopman MJ; Tol JP; Dahele M; Bucko E; Meijnen P; Slotman BJ; Verbakel WF
    Pract Radiat Oncol; 2018; 8(5):332-341. PubMed ID: 29907505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations.
    Hussein M; Heijmen BJM; Verellen D; Nisbet A
    Br J Radiol; 2018 Dec; 91(1092):20180270. PubMed ID: 30074813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatically configuring the reference point method for automated multi-objective treatment planning.
    van Haveren R; Heijmen BJM; Breedveld S
    Phys Med Biol; 2019 Jan; 64(3):035002. PubMed ID: 30566906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated radiation therapy treatment plan workflow using a commercial application programming interface.
    Olsen LA; Robinson CG; He GR; Wooten HO; Yaddanapudi S; Mutic S; Yang D; Moore KL
    Pract Radiat Oncol; 2014; 4(6):358-67. PubMed ID: 25407855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Radiation Treatment Planning for Cervical Cancer.
    Rhee DJ; Jhingran A; Kisling K; Cardenas C; Simonds H; Court L
    Semin Radiat Oncol; 2020 Oct; 30(4):340-347. PubMed ID: 32828389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method.
    McIntosh C; Welch M; McNiven A; Jaffray DA; Purdie TG
    Phys Med Biol; 2017 Jul; 62(15):5926-5944. PubMed ID: 28486217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Converting Treatment Plans From Helical Tomotherapy to L-Shape Linac: Clinical Workflow and Dosimetric Evaluation.
    Yuan Z; Nair CK; Benedict SH; Valicenti RK; Rao S; Fragoso RC; Wright C; Qiu J; Rong Y
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818785279. PubMed ID: 29986638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automation and artificial intelligence in radiation therapy treatment planning.
    Jones S; Thompson K; Porter B; Shepherd M; Sapkaroski D; Grimshaw A; Hargrave C
    J Med Radiat Sci; 2024 Jun; 71(2):290-298. PubMed ID: 37794690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity-modulated radiotherapy: current status and issues of interest.
    Intensity Modulated Radiation Therapy Collaborative Working Group
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):880-914. PubMed ID: 11704310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning model to predict dose-volume histograms of organs at risk in radiotherapy treatment plans.
    Liu Z; Chen X; Men K; Yi J; Dai J
    Med Phys; 2020 Nov; 47(11):5467-5481. PubMed ID: 32677104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance.
    Vandewinckele L; Claessens M; Dinkla A; Brouwer C; Crijns W; Verellen D; van Elmpt W
    Radiother Oncol; 2020 Dec; 153():55-66. PubMed ID: 32920005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can automated treatment plans gain traction in the clinic?
    Amaloo C; Hayes L; Manning M; Liu H; Wiant D
    J Appl Clin Med Phys; 2019 Aug; 20(8):29-35. PubMed ID: 31313508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.