These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 34175336)
1. Construction of wood-based cellulose micro-framework composite form-stable multifunctional materials with thermal and electrical response via incorporating erythritol-urea (thiourea)-carbon nanotubes. Qin X; Feng N; Kang Z; Hu D Int J Biol Macromol; 2021 Aug; 184():538-550. PubMed ID: 34175336 [TBL] [Abstract][Full Text] [Related]
2. Latent Heat Storage and Thermal Efficacy of Carboxymethyl Cellulose Carbon Foams Containing Ag, Al, Carbon Nanotubes, and Graphene in a Phase Change Material. Kim HG; Kim YS; Kwac LK; Shin HJ; Lee SO; Lee US; Shin HK Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30696012 [TBL] [Abstract][Full Text] [Related]
3. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570 [TBL] [Abstract][Full Text] [Related]
4. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor. Shrestha R; Lee KM; Chang WS; Kim DS; Rhee GH; Choi TY Rev Sci Instrum; 2013 Mar; 84(3):034901. PubMed ID: 23556837 [TBL] [Abstract][Full Text] [Related]
5. High efficiency electro- and photo-thermal conversion cellulose nanofiber-based phase change materials for thermal management. Liu Y; Liu H; Qi H J Colloid Interface Sci; 2023 Jan; 629(Pt A):478-486. PubMed ID: 36088693 [TBL] [Abstract][Full Text] [Related]
6. High thermal conductivity regenerated cellulose/carboxylated carbon nanotubes composite films with semi-insulating properties prepared via ionic coordination and hydrothermal synthesis of zinc oxide. Li D; Ti P; Huang L; Chen X; Zhu Q; Chen J; Yuan Q Int J Biol Macromol; 2024 Apr; 264(Pt 1):130004. PubMed ID: 38325679 [TBL] [Abstract][Full Text] [Related]
7. A cellulose nanoarchitectonic: Multifunctional and robust superhydrophobic coating toward rapid and intelligent water-removing purpose. Zhu Z; Fu S; Basta AH Carbohydr Polym; 2020 Sep; 243():116444. PubMed ID: 32532392 [TBL] [Abstract][Full Text] [Related]
8. Polypyrrole coated carbon nanotube aerogel composite phase change materials with enhanced thermal conductivity, high solar-/electro- thermal energy conversion and storage. Tao Z; Zou H; Li M; Ren S; Xu J; Lin J; Yang M; Feng Y; Wang G J Colloid Interface Sci; 2023 Jan; 629(Pt B):632-643. PubMed ID: 36183644 [TBL] [Abstract][Full Text] [Related]
9. Carbon Nanotube-, Boron Nitride-, and Graphite-Filled Polyketone Composites for Thermal Energy Management. Seki Y; Tokgöz MM; Öner F; Sarikanat M; Altay L ACS Omega; 2023 Jun; 8(22):19265-19272. PubMed ID: 37305232 [TBL] [Abstract][Full Text] [Related]
10. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. Agarwal M; Xing Q; Shim BS; Kotov N; Varahramyan K; Lvov Y Nanotechnology; 2009 May; 20(21):215602. PubMed ID: 19423933 [TBL] [Abstract][Full Text] [Related]
11. Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Li H; Zong Y; He J; Ding Q; Jiang Y; Li X; Han W Carbohydr Polym; 2022 Mar; 280():119036. PubMed ID: 35027119 [TBL] [Abstract][Full Text] [Related]
12. Fluorinated Carbon Nanotube/Nanofibrillated Cellulose Composite Film with Enhanced Toughness, Superior Thermal Conductivity, and Electrical Insulation. Wang X; Wu P ACS Appl Mater Interfaces; 2018 Oct; 10(40):34311-34321. PubMed ID: 30207455 [TBL] [Abstract][Full Text] [Related]
13. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
14. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962 [TBL] [Abstract][Full Text] [Related]
16. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Wang M; Anoshkin IV; Nasibulin AG; Korhonen JT; Seitsonen J; Pere J; Kauppinen EI; Ras RH; Ikkala O Adv Mater; 2013 May; 25(17):2428-32. PubMed ID: 23450504 [TBL] [Abstract][Full Text] [Related]
17. Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved Du X; Qiu J; Deng S; Du Z; Cheng X; Wang H ACS Appl Mater Interfaces; 2020 Feb; 12(5):5695-5703. PubMed ID: 31920067 [TBL] [Abstract][Full Text] [Related]
18. Nanoscale Heat Conduction in CNT-POLYMER Nanocomposites at Fast Thermal Perturbations. Minakov AA; Schick C Molecules; 2019 Jul; 24(15):. PubMed ID: 31370312 [TBL] [Abstract][Full Text] [Related]
19. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. Atinafu DG; Yun BY; Wi S; Kang Y; Kim S Environ Res; 2021 Apr; 195():110853. PubMed ID: 33567299 [TBL] [Abstract][Full Text] [Related]
20. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation. Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]