These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 34175336)
21. Design and Fabrication of Epichlorohydrin-Cross-Linked Methyl Cellulose Aerogel-Based Composite Materials for Magnetic UV Response Light-to-Heat Conversion and Storage. Fang H; Feng N; Wu D; Hu D Biomacromolecules; 2021 Oct; 22(10):4155-4168. PubMed ID: 34473483 [TBL] [Abstract][Full Text] [Related]
22. Design and Construction of Photochromic and Antileakage Reinforced Wood-Based Cellulose Microframework/Hexadecanol-Coconut Oil Composite Phase Change Material. Feng N; Deng J; Teng G; Hu D Langmuir; 2021 Jun; 37(24):7513-7526. PubMed ID: 34110171 [TBL] [Abstract][Full Text] [Related]
23. Polyethylene Glycol-Carbon Nanotubes/Expanded Vermiculite Form-Stable Composite Phase Change Materials: Simultaneously Enhanced Latent Heat and Heat Transfer. Deng Y; He M; Li J; Yang Z Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960814 [TBL] [Abstract][Full Text] [Related]
24. Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials. Qi H; Schulz B; Vad T; Liu J; Mäder E; Seide G; Gries T ACS Appl Mater Interfaces; 2015 Oct; 7(40):22404-12. PubMed ID: 26378865 [TBL] [Abstract][Full Text] [Related]
25. Raman characterization of thermal conduction in transparent carbon nanotube films. Kim D; Zhu L; Han CS; Kim JH; Baik S Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446 [TBL] [Abstract][Full Text] [Related]
26. Carbon nanotube wires and cables: near-term applications and future perspectives. Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338 [TBL] [Abstract][Full Text] [Related]
27. Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries. Thauer E; Ottmann A; Schneider P; Möller L; Deeg L; Zeus R; Wilhelmi F; Schlestein L; Neef C; Ghunaim R; Gellesch M; Nowka C; Scholz M; Haft M; Wurmehl S; Wenelska K; Mijowska E; Kapoor A; Bajpai A; Hampel S; Klingeler R Molecules; 2020 Feb; 25(5):. PubMed ID: 32120977 [TBL] [Abstract][Full Text] [Related]
28. Capric Acid Hybridizing Fly Ash and Carbon Nanotubes as a Novel Shape-Stabilized Phase Change Material for Thermal Energy Storage. Liu P; Gu X; Zhang Z; Rao J; Shi J; Wang B; Bian L ACS Omega; 2019 Sep; 4(12):14962-14969. PubMed ID: 31552337 [TBL] [Abstract][Full Text] [Related]
30. Construction of Three-Dimensional Network Structure in Polyethylene-EPDM-Based Phase Change Materials by Carbon Nanotube with Enhanced Thermal Conductivity, Mechanical Property and Photo-Thermal Conversion Performance. He Y; Chen Y; Liu C; Huang L; Huang C; Lu J; Huang H Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683956 [TBL] [Abstract][Full Text] [Related]
31. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Wang L; Hu S; Ullah MW; Li X; Shi Z; Yang G Carbohydr Polym; 2020 Dec; 249():116829. PubMed ID: 32933675 [TBL] [Abstract][Full Text] [Related]
32. Improved Cooling Performance of Hydrogel Wound Dressings via Integrating Thermal Conductivity and Heat Storage Capacity for Burn Therapy. Shi W; Song N; Huang Y; He C; Zhang M; Zhao W; Zhao C Biomacromolecules; 2022 Mar; 23(3):889-902. PubMed ID: 35090105 [TBL] [Abstract][Full Text] [Related]
33. Melting of metallic electrodes and their flowing through a carbon nanotube channel within a device. Zou R; Zhang Z; Liu Q; Xu K; Lu A; Hu J; Li Q; Bando Y; Golberg D Adv Mater; 2013 May; 25(19):2693-9. PubMed ID: 23559074 [TBL] [Abstract][Full Text] [Related]
34. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Jin H; Zha C; Gu L Carbohydr Res; 2007 May; 342(6):851-8. PubMed ID: 17280653 [TBL] [Abstract][Full Text] [Related]
35. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels. Shi J; Lu L; Guo W; Zhang J; Cao Y Carbohydr Polym; 2013 Oct; 98(1):282-9. PubMed ID: 23987346 [TBL] [Abstract][Full Text] [Related]
36. Convolutional neural networks for approximating electrical and thermal conductivities of Cu-CNT composites. Ejaz F; Hwang LK; Son J; Kim JS; Lee DS; Kwon B Sci Rep; 2022 Aug; 12(1):13614. PubMed ID: 35948586 [TBL] [Abstract][Full Text] [Related]
37. Highly aligned welding of ultrathin graphene layer to robust carbon nanotube film for significantly enhanced thermal conductivity. Fu H; Liu D; Yu Y; Yang Z; Zhang Y; Wang B; Niu Y; Jia S Nanotechnology; 2021 Sep; 32(49):. PubMed ID: 34433147 [TBL] [Abstract][Full Text] [Related]
38. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Choi TY; Poulikakos D; Tharian J; Sennhauser U Nano Lett; 2006 Aug; 6(8):1589-93. PubMed ID: 16895340 [TBL] [Abstract][Full Text] [Related]
39. Thermal Conductivity of Diamond Packed Electrospun PAN-Based Carbon Fibers Incorporated with Multi Wall Carbon Nanotubes. Dong Q; Lu C; Tulugan K; Jin C; Yoon SJ; Park YM; Kim TG J Nanosci Nanotechnol; 2016 Feb; 16(2):1843-7. PubMed ID: 27433684 [TBL] [Abstract][Full Text] [Related]
40. Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity. Pang Z; Gu X; Wei Y; Yang R; Dresselhaus MS Nano Lett; 2017 Jan; 17(1):179-185. PubMed ID: 28073254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]