These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34175380)
1. Development of PEGylated chitosan/CRISPR-Cas9 dry powders for pulmonary delivery via thin-film freeze-drying. Zhang H; Zhang Y; Williams RO; Smyth HDC Int J Pharm; 2021 Aug; 605():120831. PubMed ID: 34175380 [TBL] [Abstract][Full Text] [Related]
2. Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying. Hufnagel S; Xu H; Sahakijpijarn S; Moon C; Chow LQM; Williams Iii RO; Cui Z Int J Pharm; 2022 Apr; 618():121637. PubMed ID: 35259440 [TBL] [Abstract][Full Text] [Related]
3. Development of drug alone and carrier-based GLP-1 dry powder inhaler formulations. Babenko M; Alany RG; Calabrese G; Kaialy W; ElShaer A Int J Pharm; 2022 Apr; 617():121601. PubMed ID: 35181460 [TBL] [Abstract][Full Text] [Related]
4. Manufacturing Stable Bacteriophage Powders by Including Buffer System in Formulations and Using Thin Film Freeze-drying Technology. Zhang Y; Soto M; Ghosh D; Williams RO Pharm Res; 2021 Oct; 38(10):1793-1804. PubMed ID: 34697726 [TBL] [Abstract][Full Text] [Related]
5. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Wang JL; Hanafy MS; Xu H; Leal J; Zhai Y; Ghosh D; Williams Iii RO; David Charles Smyth H; Cui Z Int J Pharm; 2021 Mar; 596():120215. PubMed ID: 33486021 [TBL] [Abstract][Full Text] [Related]
6. Development of (Inhalable) Dry Powder Formulations of AS01 AboulFotouh K; Xu H; Moon C; Williams RO; Cui Z Int J Pharm; 2022 Jun; 622():121825. PubMed ID: 35577037 [TBL] [Abstract][Full Text] [Related]
7. [Development of Inhalable Dry Powder Formulations Loaded with Nanoparticles Maintaining Their Original Physical Properties and Functions]. Okuda T Yakugaku Zasshi; 2017; 137(11):1339-1348. PubMed ID: 29093369 [TBL] [Abstract][Full Text] [Related]
8. Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Brunaugh AD; Wu T; Kanapuram SR; Smyth HDC Mol Pharm; 2019 Oct; 16(10):4165-4180. PubMed ID: 31448924 [TBL] [Abstract][Full Text] [Related]
9. Intranasal delivery of thin-film freeze-dried monoclonal antibodies using a powder nasal spray system. Yu YS; Xu H; AboulFotouh K; Williams G; Suman J; Sahakijpijarn S; Cano C; Warnken ZN; Wu KC; Williams RO; Cui Z Int J Pharm; 2024 Mar; 653():123892. PubMed ID: 38350499 [TBL] [Abstract][Full Text] [Related]
10. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery. Nieto-Orellana A; Coghlan D; Rothery M; Falcone FH; Bosquillon C; Childerhouse N; Mantovani G; Stolnik S Int J Pharm; 2018 Apr; 540(1-2):78-88. PubMed ID: 29425761 [TBL] [Abstract][Full Text] [Related]
11. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. Qiu Y; Man RCH; Liao Q; Kung KLK; Chow MYT; Lam JKW J Control Release; 2019 Nov; 314():102-115. PubMed ID: 31629037 [TBL] [Abstract][Full Text] [Related]
12. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation. Yu H; Teo J; Chew JW; Hadinoto K Int J Pharm; 2016 Feb; 499(1-2):38-46. PubMed ID: 26757148 [TBL] [Abstract][Full Text] [Related]
13. Dry powder inhalers: physicochemical and aerosolization properties of several size-fractions of a promising alterative carrier, freeze-dried mannitol. Kaialy W; Nokhodchi A Eur J Pharm Sci; 2015 Feb; 68():56-67. PubMed ID: 25497318 [TBL] [Abstract][Full Text] [Related]
14. Inhalable dry powders of microRNA-laden extracellular vesicles prepared by thin-film freeze-drying. AboulFotouh K; Almanza G; Yu YS; Joyce R; Davenport GJ; Cano C; Williams Iii RO; Zanetti M; Cui Z Int J Pharm; 2024 Feb; 651():123757. PubMed ID: 38160992 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of the extra-fine particle fraction of levofloxacin embedded in excipient matrix formulations for dry powder inhaler using response surface methodology. Tse JY; Kadota K; Imakubo T; Uchiyama H; Tozuka Y Eur J Pharm Sci; 2021 Jan; 156():105600. PubMed ID: 33075466 [TBL] [Abstract][Full Text] [Related]
16. Application of void forming index (VFI): Detection of the effect of physical properties of dry powder inhaler formulations on powder cohesion. Maruyama S; Ando S; Yonemochi E Int J Pharm; 2020 Oct; 588():119766. PubMed ID: 32800937 [TBL] [Abstract][Full Text] [Related]
17. Optimization and characterization of dry powder of fanhuncaoin for inhalation based on selection of excipients. Yang XB; Wang XB; Pan WS; Xi RG; Wang YN; Liu D; Shi Y; Jiang S Chem Pharm Bull (Tokyo); 2011; 59(8):929-37. PubMed ID: 21804235 [TBL] [Abstract][Full Text] [Related]
18. [Development of an Inhalation Dry Powder Preparation Method without Heat-drying Process]. Ito T Yakugaku Zasshi; 2023; 143(4):353-358. PubMed ID: 37005236 [TBL] [Abstract][Full Text] [Related]
19. Liposomal dry powders as aerosols for pulmonary delivery of proteins. Lu D; Hickey AJ AAPS PharmSciTech; 2005 Dec; 6(4):E641-8. PubMed ID: 16408866 [TBL] [Abstract][Full Text] [Related]
20. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying. Saboti D; Maver U; Chan HK; Planinšek O J Pharm Sci; 2017 Jul; 106(7):1881-1888. PubMed ID: 28285981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]