These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34175475)

  • 1. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtensile properties and failure mechanisms of cortical bone at the lamellar level.
    Casari D; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 120():135-145. PubMed ID: 32428682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture toughness of bone at the microscale.
    Aldegaither N; Sernicola G; Mesgarnejad A; Karma A; Balint D; Wang J; Saiz E; Shefelbine SJ; Porter AE; Giuliani F
    Acta Biomater; 2021 Feb; 121():475-483. PubMed ID: 33307248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture behaviour and toughening mechanisms of dry and wet collagen.
    Bose S; Li S; Mele E; Silberschmidt VV
    Acta Biomater; 2022 Apr; 142():174-184. PubMed ID: 35134565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofibril-mediated fracture resistance of bone.
    Tertuliano OA; Edwards BW; Meza LR; Deshpande VS; Greer JR
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33470971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of test environment on the fracture resistance of cortical bone.
    Shin M; Zhang M; Vom Scheidt A; Pelletier MH; Walsh WR; Martens PJ; Kruzic JJ; Busse B; Gludovatz B
    J Mech Behav Biomed Mater; 2022 May; 129():105155. PubMed ID: 35313188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-lamellar microcracking and roles of canaliculi in human cortical bone.
    Ebacher V; Guy P; Oxland TR; Wang R
    Acta Biomater; 2012 Mar; 8(3):1093-100. PubMed ID: 22134162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of nanoscale failure behaviour of cortical bone under stress by AFM.
    Qian T; Chen X; Hang F
    J Mech Behav Biomed Mater; 2020 Dec; 112():103989. PubMed ID: 32911223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscale compressive behavior of hydrated lamellar bone at high strain rates.
    Peruzzi C; Ramachandramoorthy R; Groetsch A; Casari D; Grönquist P; Rüggeberg M; Michler J; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():403-414. PubMed ID: 34245895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of microstructure on crack propagation in cortical bone at the mesoscale.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale.
    Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates.
    Zimmermann EA; Gludovatz B; Schaible E; Busse B; Ritchie RO
    Biomaterials; 2014 Jul; 35(21):5472-81. PubMed ID: 24731707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.