These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34175491)
1. Estimation of causal effect in integrating randomized clinical trial and observational data - An example application to cardiovascular outcome trial. Zhang Y; Lin LA; Starkopf L; Chen J; Wang WWB Contemp Clin Trials; 2021 Aug; 107():106492. PubMed ID: 34175491 [TBL] [Abstract][Full Text] [Related]
2. Integrative Analysis of Randomized Clinical Trial and Observational Study Data to Inform Post-marketing Safety Decision-Making. Lin LA; Zhang Y; Straus W; Wang W Ther Innov Regul Sci; 2022 May; 56(3):423-432. PubMed ID: 35138577 [TBL] [Abstract][Full Text] [Related]
3. Utilization of anonymization techniques to create an external control arm for clinical trial data. Mehtälä J; Ali M; Miettinen T; Partanen L; Laapas K; Niemelä PT; Khorlo I; Ström S; Kurki S; Vapalahti J; Abdelgawwad K; Leinonen JV BMC Med Res Methodol; 2023 Nov; 23(1):258. PubMed ID: 37925415 [TBL] [Abstract][Full Text] [Related]
4. Preliminary Attainability Assessment of Real-World Data for Answering Major Clinical Research Questions in Breast Cancer Brain Metastasis: Framework Development and Validation Study. Kim MJ; Kim HJ; Kang D; Ahn HK; Shin SY; Park S; Cho J; Park YH J Med Internet Res; 2023 Mar; 25():e43359. PubMed ID: 36951923 [TBL] [Abstract][Full Text] [Related]
5. Sources of Safety Data and Statistical Strategies for Design and Analysis: Real World Insights. Marchenko O; Russek-Cohen E; Levenson M; Zink RC; Krukas-Hampel MR; Jiang Q Ther Innov Regul Sci; 2018 Mar; 52(2):170-186. PubMed ID: 29714518 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of clinical trial and real-world data in patients with diabetic kidney disease. Kurki S; Halla-Aho V; Haussmann M; Lähdesmäki H; Leinonen JV; Koskinen M Sci Rep; 2024 Jan; 14(1):1731. PubMed ID: 38243002 [TBL] [Abstract][Full Text] [Related]
7. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies. Schuler MS; Rose S Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068 [TBL] [Abstract][Full Text] [Related]
8. Case study of semaglutide and cardiovascular outcomes: An application of the C Dang LE; Fong E; Tarp JM; Clemmensen KKB; Ravn H; Kvist K; Buse JB; van der Laan M; Petersen M J Clin Transl Sci; 2023; 7(1):e231. PubMed ID: 38028337 [TBL] [Abstract][Full Text] [Related]
9. It is important to note that RWD will never replace the more traditional and more robust RCT data; however, the emerging trend is to incorporate data that are more generalizable. Introduction. Mullins CD; Sanchez RJ J Manag Care Pharm; 2011; 17(9 Suppl A):S03-4. PubMed ID: 22074667 [TBL] [Abstract][Full Text] [Related]
10. Stroke prevention in atrial fibrillation: re-defining 'real-world data' within the broader data universe. Fanaroff AC; Steffel J; Alexander JH; Lip GYH; Califf RM; Lopes RD Eur Heart J; 2018 Aug; 39(32):2932-2941. PubMed ID: 29688403 [TBL] [Abstract][Full Text] [Related]
11. Real-World Data as External Controls: Practical Experience from Notable Marketing Applications of New Therapies. Izem R; Buenconsejo J; Davi R; Luan JJ; Tracy L; Gamalo M Ther Innov Regul Sci; 2022 Sep; 56(5):704-716. PubMed ID: 35676557 [TBL] [Abstract][Full Text] [Related]
12. Matching within a hybrid RCT/RWD: framework on associated causal estimands. Lin J; Yu G; Gamalo M J Biopharm Stat; 2023 Jul; 33(4):439-451. PubMed ID: 35929973 [TBL] [Abstract][Full Text] [Related]
13. A Two-Step Framework for Validating Causal Effect Estimates. Shen L; Visser E; van Erning F; Geleijnse G; Kaptein M Pharmacoepidemiol Drug Saf; 2024 Sep; 33(9):e5873. PubMed ID: 39252380 [TBL] [Abstract][Full Text] [Related]
14. Sunitinib for Metastatic Renal Cell Carcinoma: A Systematic Review and Meta-Analysis of Real-World and Clinical Trials Data. Moran M; Nickens D; Adcock K; Bennetts M; Desscan A; Charnley N; Fife K Target Oncol; 2019 Aug; 14(4):405-416. PubMed ID: 31301015 [TBL] [Abstract][Full Text] [Related]
15. Propensity score-integrated composite likelihood approach for augmenting the control arm of a randomized controlled trial by incorporating real-world data. Chen WC; Wang C; Li H; Lu N; Tiwari R; Xu Y; Yue LQ J Biopharm Stat; 2020 May; 30(3):508-520. PubMed ID: 32370640 [TBL] [Abstract][Full Text] [Related]
16. Hypoglycemia Event Rates: A Comparison Between Real-World Data and Randomized Controlled Trial Populations in Insulin-Treated Diabetes. Elliott L; Fidler C; Ditchfield A; Stissing T Diabetes Ther; 2016 Mar; 7(1):45-60. PubMed ID: 26886441 [TBL] [Abstract][Full Text] [Related]
17. Replication of Randomized, Controlled Trials Using Real-World Data: What Could Go Wrong? Thompson D Value Health; 2021 Jan; 24(1):112-115. PubMed ID: 33431143 [TBL] [Abstract][Full Text] [Related]
18. Considerations for pooling real-world data as a comparator cohort to a single arm trial: a simulation study on assessment of heterogeneity. Backenroth D; Royce T; Pinheiro J; Samant M; Humblet O BMC Med Res Methodol; 2023 Aug; 23(1):193. PubMed ID: 37620758 [TBL] [Abstract][Full Text] [Related]
19. Can Observational Analyses of Routinely Collected Data Emulate Randomized Trials? Design and Feasibility of the Observational Patient Evidence for Regulatory Approval Science and Understanding Disease Project. Crown W; Dahabreh IJ; Li X; Toh S; Bierer B Value Health; 2023 Feb; 26(2):176-184. PubMed ID: 35970705 [TBL] [Abstract][Full Text] [Related]
20. Target Trial Emulation for Transparent and Robust Estimation of Treatment Effects for Health Technology Assessment Using Real-World Data: Opportunities and Challenges. Gomes M; Latimer N; Soares M; Dias S; Baio G; Freemantle N; Dawoud D; Wailoo A; Grieve R Pharmacoeconomics; 2022 Jun; 40(6):577-586. PubMed ID: 35332434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]