These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34175515)

  • 21. Using UV/H
    Ding S; Wang F; Chu W; Fang C; Pan Y; Lu S; Gao N
    Water Res; 2019 Dec; 167():115096. PubMed ID: 31577966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review.
    Kali S; Khan M; Ghaffar MS; Rasheed S; Waseem A; Iqbal MM; Bilal Khan Niazi M; Zafar MI
    Environ Pollut; 2021 Jul; 281():116950. PubMed ID: 33819670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2018 Oct; 142():313-324. PubMed ID: 29890479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of operational conditions on the disinfection by-products formation potential of exopolymeric substances from biofilms in drinking water.
    Lemus-Pérez MF; Rodríguez Susa M
    Sci Total Environ; 2020 Dec; 748():141148. PubMed ID: 32798885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of metastable disinfection byproducts during free and combined aspartic acid chlorination: Effect of peptide bonds and impact on toxicity.
    Yu Y; Reckhow DA
    Water Res; 2020 Jan; 168():115131. PubMed ID: 31622913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.
    Ding S; Chu W; Krasner SW; Yu Y; Fang C; Xu B; Gao N
    Water Res; 2018 Oct; 142():490-500. PubMed ID: 29920459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of biofilms on the formation and decay of disinfection by-products in chlor(am)inated water distribution systems.
    Wang Z; Li L; Ariss RW; Coburn KM; Behbahani M; Xue Z; Seo Y
    Sci Total Environ; 2021 Jan; 753():141606. PubMed ID: 32890868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic effects of quenching agents and pH on the stability of regulated and unregulated disinfection by-products for drinking water quality monitoring.
    Gao J; Proulx F; Rodriguez MJ
    Environ Monit Assess; 2020 Jan; 192(2):143. PubMed ID: 31989324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.
    Xiang Y; Fang J; Shang C
    Water Res; 2016 Mar; 90():301-308. PubMed ID: 26748208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron particle formation under chlorine disinfection considering effects of deoxidizers in drinking water.
    Zhuang Y; Chen R; Shi B
    J Hazard Mater; 2021 Oct; 420():126581. PubMed ID: 34271442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predominant N-Haloacetamide and Haloacetonitrile Formation in Drinking Water via the Aldehyde Reaction Pathway.
    Vu TN; Kimura SY; Plewa MJ; Richardson SD; Mariñas BJ
    Environ Sci Technol; 2019 Jan; 53(2):850-859. PubMed ID: 30522267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low chlorine impurity might be beneficial in chlorine dioxide disinfection.
    Han J; Zhang X; Li W; Jiang J
    Water Res; 2021 Jan; 188():116520. PubMed ID: 33091806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multivariate Bayesian network analysis of water quality factors influencing trihalomethanes formation in drinking water distribution systems.
    Li RA; McDonald JA; Sathasivan A; Khan SJ
    Water Res; 2021 Feb; 190():116712. PubMed ID: 33310438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.
    Zhou S; Xia Y; Li T; Yao T; Shi Z; Zhu S; Gao N
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16448-55. PubMed ID: 27164884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular characterization of transformation and halogenation of natural organic matter during the UV/chlorine AOP using FT-ICR mass spectrometry.
    Ruan X; Xiang Y; Shang C; Cheng S; Liu J; Hao Z; Yang X
    J Environ Sci (China); 2021 Apr; 102():24-36. PubMed ID: 33637249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview.
    Manasfi T; Coulomb B; Boudenne JL
    Int J Hyg Environ Health; 2017 May; 220(3):591-603. PubMed ID: 28174041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The formation and control of emerging disinfection by-products of health concern.
    Krasner SW
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1904):4077-95. PubMed ID: 19736234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2019 Oct; 162():115-126. PubMed ID: 31255781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems.
    Liu C
    J Environ Sci (China); 2021 Dec; 110():140-149. PubMed ID: 34593185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.