These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34175570)

  • 1. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump.
    Drazan JF; Phillips WT; Seethapathi N; Hullfish TJ; Baxter JR
    J Biomech; 2021 Aug; 125():110547. PubMed ID: 34175570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
    Turner JA; Chaaban CR; Padua DA
    J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system.
    Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH
    Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR
    J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics.
    Van Hooren B; Pecasse N; Meijer K; Essers JMN
    Scand J Med Sci Sports; 2023 Jun; 33(6):966-978. PubMed ID: 36680411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment.
    Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA
    J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development and evaluation of a fully automated markerless motion capture workflow.
    Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL
    J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications.
    Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J
    PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AI-smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps.
    Barzyk P; Zimmermann P; Stein M; Keim D; Gruber M
    Eur J Sport Sci; 2024 Oct; 24(10):1452-1462. PubMed ID: 39205332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture.
    Huang T; Ruan M; Huang S; Fan L; Wu X
    Front Bioeng Biotechnol; 2024; 12():1280363. PubMed ID: 38532880
    [No Abstract]   [Full Text] [Related]  

  • 15. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait.
    Ripic Z; Nienhuis M; Signorile JF; Best TM; Jacobs KA; Eltoukhy M
    J Biomech; 2023 Oct; 159():111793. PubMed ID: 37725886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill.
    Torvinen P; Ruotsalainen KS; Zhao S; Cronin N; Ohtonen O; Linnamo V
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy.
    Pagnon D; Domalain M; Reveret L
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of markerless and marker-based motion capture of gait kinematics in individuals with cerebral palsy and chronic stroke: A case study series.
    Steffensen EA; Magalhães F; Knarr BA; Kingston DC
    Res Sq; 2023 Feb; ():. PubMed ID: 36798184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System.
    Mauntel TC; Padua DA; Stanley LE; Frank BS; DiStefano LJ; Peck KY; Cameron KL; Marshall SW
    J Athl Train; 2017 Nov; 52(11):1002-1009. PubMed ID: 29048200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-session repeatability of markerless motion capture gait kinematics.
    Kanko RM; Laende E; Selbie WS; Deluzio KJ
    J Biomech; 2021 May; 121():110422. PubMed ID: 33873117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.