These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34175755)

  • 1. Rapid spectroscopic method for quantifying gluten concentration as a potential biomarker to test adulteration of green banana flour.
    Ndlovu PF; Magwaza LS; Tesfay SZ; Mphahlele RR
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120081. PubMed ID: 34175755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid visible-near infrared (Vis-NIR) spectroscopic detection and quantification of unripe banana flour adulteration with wheat flour.
    Ndlovu PF; Magwaza LS; Tesfay SZ; Mphahlele RR
    J Food Sci Technol; 2019 Dec; 56(12):5484-5491. PubMed ID: 31749496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid determination of total protein and wet gluten in commercial wheat flour using siSVR-NIR.
    Chen J; Zhu S; Zhao G
    Food Chem; 2017 Apr; 221():1939-1946. PubMed ID: 27979183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive determination of grass pea and pea flour adulteration in chickpea flour using near-infrared reflectance spectroscopy and chemometrics.
    Bala M; Sethi S; Sharma S; Mridula D; Kaur G
    J Sci Food Agric; 2023 Feb; 103(3):1294-1302. PubMed ID: 36098480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Detection of Volatile Oil in
    Yan H; Guo C; Shao Y; Ouyang Z
    Pharmacogn Mag; 2017; 13(51):439-445. PubMed ID: 28839369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Visible/Near-Infrared Spectroscopy in the Prediction of Azodicarbonamide in Wheat Flour.
    Che W; Sun L; Zhang Q; Zhang D; Ye D; Tan W; Wang L; Dai C
    J Food Sci; 2017 Oct; 82(10):2516-2525. PubMed ID: 28892170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of maize flour adulteration in chickpea flour (
    Bala M; Sethi S; Sharma S; Mridula D; Kaur G
    J Food Sci Technol; 2022 Aug; 59(8):3130-3138. PubMed ID: 35505664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fast determination of mineral elements in wheat flour by near-infrared spectroscopy].
    Gao H; Wang G; Wang Z
    Wei Sheng Yan Jiu; 2021 May; 50(3):495-500. PubMed ID: 34074375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods.
    Weng S; Guo B; Tang P; Yin X; Pan F; Zhao J; Huang L; Zhang D
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118005. PubMed ID: 31951866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Talc Content in Wheat Flour Based on a Near-Infrared Spectroscopy Technique.
    Liu YI; Sun L; Ran Z; Pan X; Zhou S; Liu S
    J Food Prot; 2019 Oct; 82(10):1655-1662. PubMed ID: 31526188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid prediction method of ZIF-8 immobilized Candida rugosa lipase activity by near-infrared spectroscopy.
    Chen S; Ma M; Peng J; He X; Wang Q; Chu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123072. PubMed ID: 37390722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Stingless Bee Honey Adulteration Using Visible-Near Infrared Spectroscopy Combined with Aquaphotomics.
    Raypah ME; Omar AF; Muncan J; Zulkurnain M; Abdul Najib AR
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system.
    Yuan R; Liu G; He J; Ma C; Cheng L; Fan N; Ban J; Li Y; Sun Y
    J Food Sci; 2020 May; 85(5):1403-1410. PubMed ID: 32304238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of gluten in wheat flour by FT-Raman spectroscopy.
    Czaja T; Mazurek S; Szostak R
    Food Chem; 2016 Nov; 211():560-3. PubMed ID: 27283667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).
    Genkawa T; Shinzawa H; Kato H; Ishikawa D; Murayama K; Komiyama M; Ozaki Y
    Appl Spectrosc; 2015 Dec; 69(12):1432-41. PubMed ID: 26556507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green banana pasta: an alternative for gluten-free diets.
    Zandonadi RP; Botelho RB; Gandolfi L; Ginani JS; Montenegro FM; Pratesi R
    J Acad Nutr Diet; 2012 Jul; 112(7):1068-72. PubMed ID: 22889636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques.
    Douglas RK; Nawar S; Alamar MC; Mouazen AM; Coulon F
    Sci Total Environ; 2018 Mar; 616-617():147-155. PubMed ID: 29127788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis.
    Kamruzzaman M; Sun DW; ElMasry G; Allen P
    Talanta; 2013 Jan; 103():130-6. PubMed ID: 23200368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy.
    Kuriakose S; Thankappan X; Joe H; Venkataraman V
    Analyst; 2010 Oct; 135(10):2676-81. PubMed ID: 20820490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Fourier transformed infrared spectroscopy coupled with multivariate methods for detection and quantification of urea adulteration in fresh milk samples.
    Mabood F; Ali L; Boque R; Abbas G; Jabeen F; Haq QMI; Hussain J; Hamaed AM; Naureen Z; Al-Nabhani M; Khan MZ; Khan A; Al-Harrasi A
    Food Sci Nutr; 2020 Oct; 8(10):5249-5258. PubMed ID: 33133527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.