BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34175760)

  • 1. Raman imaging and statistical methods for analysis various type of human brain tumors and breast cancers.
    Kopec M; Błaszczyk M; Radek M; Abramczyk H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120091. PubMed ID: 34175760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy and imaging: applications in human breast cancer diagnosis.
    Brozek-Pluska B; Musial J; Kordek R; Bailo E; Dieing T; Abramczyk H
    Analyst; 2012 Aug; 137(16):3773-80. PubMed ID: 22754917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free detection of brain tumors in a 9L gliosarcoma rat model using stimulated Raman scattering-spectroscopic optical coherence tomography.
    Soltani S; Guang Z; Zhang Z; Olson J; Robles F
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34263579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biochemical, nanomechanical and chemometric signatures of brain cancer.
    Abramczyk H; Imiela A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():8-19. PubMed ID: 28688336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman imaging and chemometric methods in human normal bronchial and cancer lung cells: Raman biomarkers of lipid reprogramming.
    Kopec M; Beton-Mysur K; Abramczyk H
    Chem Phys Lipids; 2023 Nov; 257():105339. PubMed ID: 37748746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect.
    Surmacki J; Brozek-Pluska B; Kordek R; Abramczyk H
    Analyst; 2015 Apr; 140(7):2121-33. PubMed ID: 25615557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman imaging at biological interfaces: applications in breast cancer diagnosis.
    Surmacki J; Musial J; Kordek R; Abramczyk H
    Mol Cancer; 2013 May; 12():48. PubMed ID: 23705882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Spectroscopic Similarity between Breast Cancer Tissues and Lymph Nodes Obtained from Patients with and without Recurrence: A Preliminary Study.
    Depciuch J; Stanek-Widera A; Khinevich N; Bandarenka HV; Kandler M; Bayev V; Fedotova J; Lange D; Stanek-Tarkowska J; Cebulski J
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical correlation of Raman spectra of normal, benign and malignant breast tissues: a spectral deconvolution study.
    Chowdary MV; Kalyan Kumar K; Mathew S; Rao L; Krishna CM; Kurien J
    Biopolymers; 2009 Jul; 91(7):539-46. PubMed ID: 19226625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of pro- and antiangiogenic factors in angiogenesis process by Raman spectroscopy.
    Kopec M; Abramczyk H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120667. PubMed ID: 34865975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of different cancer types clustering Raman spectra by a super paramagnetic stochastic network approach.
    González-Solís JL
    PLoS One; 2019; 14(3):e0213621. PubMed ID: 30861043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Human Colon by Raman Spectroscopy and Imaging-Elucidation of Biochemical Changes in Carcinogenesis.
    Brozek-Pluska B; Musial J; Kordek R; Abramczyk H
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31295965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of aromatic amino acids as potential biomarkers in breast cancer by Raman spectroscopy analysis.
    Contorno S; Darienzo RE; Tannenbaum R
    Sci Rep; 2021 Jan; 11(1):1698. PubMed ID: 33462309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite.
    Frost RL; López A; Xi Y; Cardoso LH; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():34-9. PubMed ID: 24457936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity.
    Abramczyk H; Brozek-Pluska B; Jarota A; Surmacki J; Imiela A; Kopec M
    Expert Rev Mol Diagn; 2020 Jan; 20(1):99-115. PubMed ID: 32013616
    [No Abstract]   [Full Text] [Related]  

  • 16. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).
    Frost RL; Scholz R; López A; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():243-8. PubMed ID: 24491665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue.
    Zhang J; Fan Y; He M; Ma X; Song Y; Liu M; Xu J
    Oncotarget; 2017 May; 8(22):36824-36831. PubMed ID: 28415660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics.
    Silveira FL; Pacheco MT; Bodanese B; Pasqualucci CA; Zângaro RA; Silveira L
    Lasers Surg Med; 2015 Jan; 47(1):6-16. PubMed ID: 25583686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The borate mineral jeremejevite Al6(BO3)5(F,OH)3--a vibrational spectroscopic study.
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():831-6. PubMed ID: 22925911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revision of Commonly Accepted Warburg Mechanism of Cancer Development: Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers by Raman Imaging.
    Abramczyk H; Surmacki JM; Brozek-Pluska B; Kopec M
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34073216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.