These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 3417642)
1. Reduction of retinaldehyde bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. Kakkad BP; Ong DE J Biol Chem; 1988 Sep; 263(26):12916-9. PubMed ID: 3417642 [TBL] [Abstract][Full Text] [Related]
2. Acyl-CoA-independent esterification of retinol bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. Ong DE; Kakkad B; MacDonald PN J Biol Chem; 1987 Feb; 262(6):2729-36. PubMed ID: 3818619 [TBL] [Abstract][Full Text] [Related]
3. Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II. MacDonald PN; Ong DE J Biol Chem; 1987 Aug; 262(22):10550-6. PubMed ID: 3611082 [TBL] [Abstract][Full Text] [Related]
4. Nuclear magnetic resonance studies of 6-fluorotryptophan-substituted rat cellular retinol-binding protein II produced in Escherichia coli. Analysis of the apoprotein and the holoprotein containing bound all-trans-retinol and all-trans-retinal. Li E; Quian SJ; Nader L; Yang NC; d'Avignon A; Sacchettini JC; Gordon JI J Biol Chem; 1989 Oct; 264(29):17041-8. PubMed ID: 2676998 [TBL] [Abstract][Full Text] [Related]
5. Interactions with retinol and retinoids of bovine cellular retinol-binding protein. Malpeli G; Stoppini M; Zapponi MC; Folli C; Berni R Eur J Biochem; 1995 Apr; 229(2):486-93. PubMed ID: 7744071 [TBL] [Abstract][Full Text] [Related]
6. Effects of sulfhydryl reagents, retinoids, and solubilization on the activity of microsomal retinol dehydrogenase. Boerman MH; Napoli JL Arch Biochem Biophys; 1995 Aug; 321(2):434-41. PubMed ID: 7646070 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of all-trans-retinoic acid from retinal. Recognition of retinal bound to cellular retinol binding protein (type I) as substrate by a purified cytosolic dehydrogenase. Posch KC; Burns RD; Napoli JL J Biol Chem; 1992 Sep; 267(27):19676-82. PubMed ID: 1527087 [TBL] [Abstract][Full Text] [Related]
8. Differential interaction of lecithin-retinol acyltransferase with cellular retinol binding proteins. Herr FM; Ong DE Biochemistry; 1992 Jul; 31(29):6748-55. PubMed ID: 1322170 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a lecithin-retinol acyltransferase activity in the rat small intestine. MacDonald PN; Ong DE J Biol Chem; 1988 Sep; 263(25):12478-82. PubMed ID: 3410848 [TBL] [Abstract][Full Text] [Related]
10. Esterification by rat liver microsomes of retinol bound to cellular retinol-binding protein. Yost RW; Harrison EH; Ross AC J Biol Chem; 1988 Dec; 263(35):18693-701. PubMed ID: 3198596 [TBL] [Abstract][Full Text] [Related]
11. Microsomal retinal synthesis: retinol vs. holo-CRBP as substrate and evaluation of NADP, NAD and NADPH as cofactors. Napoli JL; Posch KC; Burns RD Biochim Biophys Acta; 1992 Apr; 1120(2):183-6. PubMed ID: 1562584 [TBL] [Abstract][Full Text] [Related]
12. Differential mechanisms of retinoid transfer from cellular retinol binding proteins types I and II to phospholipid membranes. Herr FM; Li E; Weinberg RB; Cook VR; Storch J J Biol Chem; 1999 Apr; 274(14):9556-63. PubMed ID: 10092641 [TBL] [Abstract][Full Text] [Related]
13. Holocellular retinol binding protein as a substrate for microsomal retinal synthesis. Posch KC; Boerman MH; Burns RD; Napoli JL Biochemistry; 1991 Jun; 30(25):6224-30. PubMed ID: 2059629 [TBL] [Abstract][Full Text] [Related]
14. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Belyaeva OV; Korkina OV; Stetsenko AV; Kim T; Nelson PS; Kedishvili NY Biochemistry; 2005 May; 44(18):7035-47. PubMed ID: 15865448 [TBL] [Abstract][Full Text] [Related]
15. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity. Porté S; Xavier Ruiz F; Giménez J; Molist I; Alvarez S; Domínguez M; Alvarez R; de Lera AR; Parés X; Farrés J Chem Biol Interact; 2013 Feb; 202(1-3):186-94. PubMed ID: 23220004 [TBL] [Abstract][Full Text] [Related]
16. Differential recognition of the free versus bound retinol by human microsomal retinol/sterol dehydrogenases: characterization of the holo-CRBP dehydrogenase activity of RoDH-4. Lapshina EA; Belyaeva OV; Chumakova OV; Kedishvili NY Biochemistry; 2003 Jan; 42(3):776-84. PubMed ID: 12534290 [TBL] [Abstract][Full Text] [Related]
17. Retinol bound to cellular retinol-binding protein is a substrate for cytosolic retinoic acid synthesis. Ottonello S; Scita G; Mantovani G; Cavazzini D; Rossi GL J Biol Chem; 1993 Dec; 268(36):27133-42. PubMed ID: 8262951 [TBL] [Abstract][Full Text] [Related]
18. Consumption of excess vitamin A, but not excess beta-carotene, causes accumulation of retinol that exceeds the binding capacity of cellular retinol-binding protein, type II in rat intestine. Suzuki R; Goda T; Takase S J Nutr; 1995 Aug; 125(8):2074-82. PubMed ID: 7643241 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis. Napoli JL J Nutr; 1993 Feb; 123(2 Suppl):362-6. PubMed ID: 8381481 [TBL] [Abstract][Full Text] [Related]
20. Cellular retinol-binding proteins are determinants of retinol uptake and metabolism in stably transfected Caco-2 cells. Levin MS J Biol Chem; 1993 Apr; 268(11):8267-76. PubMed ID: 8463337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]