These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34176507)
1. Investigation of the impact of a broad range of temperatures on the physiological and transcriptional profiles of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development. Li R; Shen W; Yang Y; Du J; Li M; Yang S Biotechnol Biofuels; 2021 Jun; 14(1):146. PubMed ID: 34176507 [TBL] [Abstract][Full Text] [Related]
2. Development and characterization of acidic-pH-tolerant mutants of Yang Q; Yang Y; Tang Y; Wang X; Chen Y; Shen W; Zhan Y; Gao J; Wu B; He M; Chen S; Yang S Biotechnol Biofuels; 2020; 13():144. PubMed ID: 32817760 [TBL] [Abstract][Full Text] [Related]
3. Improved high-temperature ethanol production from sweet sorghum juice using Zymomonas mobilis overexpressing groESL genes. Kaewchana A; Techaparin A; Boonchot N; Thanonkeo P; Klanrit P Appl Microbiol Biotechnol; 2021 Dec; 105(24):9419-9431. PubMed ID: 34787692 [TBL] [Abstract][Full Text] [Related]
4. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. Nouri H; Moghimi H; Marashi SA; Elahi E PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245 [TBL] [Abstract][Full Text] [Related]
5. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Yang S; Vera JM; Grass J; Savvakis G; Moskvin OV; Yang Y; McIlwain SJ; Lyu Y; Zinonos I; Hebert AS; Coon JJ; Bates DM; Sato TK; Brown SD; Himmel ME; Zhang M; Landick R; Pappas KM; Zhang Y Biotechnol Biofuels; 2018; 11():125. PubMed ID: 29743953 [TBL] [Abstract][Full Text] [Related]
6. Improving Mobilization of Foreign DNA into Zymomonas mobilis Strain ZM4 by Removal of Multiple Restriction Systems. Lal PB; Wells F; Myers KS; Banerjee R; Guss AM; Kiley PJ Appl Environ Microbiol; 2021 Sep; 87(19):e0080821. PubMed ID: 34288704 [TBL] [Abstract][Full Text] [Related]
7. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. Yang S; Pan C; Tschaplinski TJ; Hurst GB; Engle NL; Zhou W; Dam P; Xu Y; Rodriguez M; Dice L; Johnson CM; Davison BH; Brown SD PLoS One; 2013; 8(7):e68886. PubMed ID: 23874800 [TBL] [Abstract][Full Text] [Related]
8. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Wang JL; Wu B; Qin H; You Y; Liu S; Shui ZX; Tan FR; Wang YW; Zhu QL; Li YB; Ruan ZY; Ma KD; Dai LC; Hu GQ; He MX Microb Cell Fact; 2016 Jun; 15(1):101. PubMed ID: 27287016 [TBL] [Abstract][Full Text] [Related]
9. A plasmid-free Geng B; Liu S; Chen Y; Wu Y; Wang Y; Zhou X; Li H; Li M; Yang S Front Bioeng Biotechnol; 2022; 10():1110513. PubMed ID: 36619397 [TBL] [Abstract][Full Text] [Related]
10. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Tan F; Wu B; Dai L; Qin H; Shui Z; Wang J; Zhu Q; Hu G; He M Microb Cell Fact; 2016 Jan; 15():4. PubMed ID: 26758018 [TBL] [Abstract][Full Text] [Related]
11. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Alvin A; Kim J; Jeong GT; Tsang YF; Kwon EE; Neilan BA; Jeon YJ Appl Microbiol Biotechnol; 2017 Jun; 101(12):5089-5099. PubMed ID: 28341886 [TBL] [Abstract][Full Text] [Related]
12. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. Yang S; Pelletier DA; Lu TY; Brown SD BMC Microbiol; 2010 May; 10():135. PubMed ID: 20459639 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Yi X; Gu H; Gao Q; Liu ZL; Bao J Biotechnol Biofuels; 2015; 8():153. PubMed ID: 26396591 [TBL] [Abstract][Full Text] [Related]
14. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Gu H; Zhang J; Bao J Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. Yang S; Tschaplinski TJ; Engle NL; Carroll SL; Martin SL; Davison BH; Palumbo AV; Rodriguez M; Brown SD BMC Genomics; 2009 Jan; 10():34. PubMed ID: 19154596 [TBL] [Abstract][Full Text] [Related]
16. Development and characterization of efficient xylose utilization strains of Zymomonas mobilis. Lou J; Wang J; Yang Y; Yang Q; Li R; Hu M; He Q; Du J; Wang X; Li M; Yang S Biotechnol Biofuels; 2021 Dec; 14(1):231. PubMed ID: 34863266 [TBL] [Abstract][Full Text] [Related]
17. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Lee KY; Park JM; Kim TY; Yun H; Lee SY Microb Cell Fact; 2010 Nov; 9():94. PubMed ID: 21092328 [TBL] [Abstract][Full Text] [Related]
18. Physiological effects of overexpressed sigma factors on fermentative stress response of Zymomonas mobilis. Benoliel T; Rubini MR; de Souza Baptistello C; Janner CR; Vieira VR; Torres FA; Walmsley A; de Moraes LMP Braz J Microbiol; 2020 Mar; 51(1):65-75. PubMed ID: 31701383 [TBL] [Abstract][Full Text] [Related]
19. Development of a counterselectable system for rapid and efficient CRISPR-based genome engineering in Zymomonas mobilis. Zheng Y; Fu H; Chen J; Li J; Bian Y; Hu P; Lei L; Liu Y; Yang J; Peng W Microb Cell Fact; 2023 Oct; 22(1):208. PubMed ID: 37833755 [TBL] [Abstract][Full Text] [Related]
20. Molecular mechanism of engineered Zymomonas mobilis to furfural and acetic acid stress. Shabbir S; Wang W; Nawaz M; Boruah P; Kulyar MF; Chen M; Wu B; Liu P; Dai Y; Sun L; Gou Q; Liu R; Hu G; Younis T; He M Microb Cell Fact; 2023 May; 22(1):88. PubMed ID: 37127628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]