BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34176977)

  • 1. Simulation of Metal-Supported Metal-Nanoislands: A Comparison of DFT Methods.
    Vázquez-Lizardi GA; Ruiz-Casanova LA; Cruz-Sánchez RM; Santana JA
    Surf Sci; 2021 Oct; 712():. PubMed ID: 34176977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of density functionals for predicting CO
    Lee JH; Hyldgaard P; Neaton JB
    J Chem Phys; 2022 Apr; 156(15):154113. PubMed ID: 35459296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of van der Waals inclusive density functional theory methods for adsorption and selective dehydrogenation of formic acid on Pt(111) surface.
    Yuan D; Liao H; Hu W
    Phys Chem Chem Phys; 2019 Oct; 21(37):21049-21056. PubMed ID: 31528914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GGA versus van der Waals density functional results for mixed gold/mercury molecules and pure Au and Hg cluster properties.
    Fernández EM; Balbás LC
    Phys Chem Chem Phys; 2011 Dec; 13(46):20863-70. PubMed ID: 22006277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular adsorption at Pt(111). How accurate are DFT functionals?
    Gautier S; Steinmann SN; Michel C; Fleurat-Lessard P; Sautet P
    Phys Chem Chem Phys; 2015 Nov; 17(43):28921-30. PubMed ID: 26455444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking the Accuracy of Density Functional Theory against the Random Phase Approximation for the Ethane Dehydrogenation Network on Pt(111).
    Szaro NA; Bello M; Fricke CH; Bamidele OH; Heyden A
    J Phys Chem Lett; 2023 Dec; 14(48):10769-10778. PubMed ID: 38011289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. van der Waals density functionals applied to corundum-type sesquioxides: bulk properties and adsorption of CH3 and C6H6 on (0001) surfaces.
    Dabaghmanesh S; Neyts EC; Partoens B
    Phys Chem Chem Phys; 2016 Aug; 18(33):23139-46. PubMed ID: 27494541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing adsorption mechanisms of pyridine on Cu, Ag, Au, and Pt(110) surfaces.
    Malone W; von der Heyde J; Kara A
    J Chem Phys; 2018 Dec; 149(21):214703. PubMed ID: 30525717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain and Low-Coordination Effects on Monolayer Nanoislands of Pd and Pt on Au(111): A Comparative Analysis Based on Density Functional Results.
    Santana JA; Cruz B; Melendez-Rivera J; Rösch N
    J Phys Chem C Nanomater Interfaces; 2020 Jun; 124(24):13225-13230. PubMed ID: 32952771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved DFT Adsorption Energies with Semiempirical Dispersion Corrections.
    Mahlberg D; Sakong S; Forster-Tonigold K; Groß A
    J Chem Theory Comput; 2019 May; 15(5):3250-3259. PubMed ID: 30964999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of water and ethanol on noble and transition-metal substrates: a density functional investigation within van der Waals corrections.
    Freire RL; Kiejna A; Da Silva JL
    Phys Chem Chem Phys; 2016 Oct; 18(42):29526-29536. PubMed ID: 27747329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xe Adsorption on Noble Metal Clusters: A Density Functional Theory Investigation.
    Monpezat A; Aupiais J; Siberchicot B
    ACS Omega; 2021 Nov; 6(47):31513-31519. PubMed ID: 34869977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Adsorption on Au-Supported Pt and Pd Nanoislands: A Computational Study of Hydrogen Coverage Effects.
    Santana JA; Meléndez-Rivera J
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):5110-5115. PubMed ID: 34178204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Structures of Single-Layer Nanoislands of Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au Supported on Au(111) from Density Functional Theory Calculations.
    Fernández-Félix TC; Santana JA
    Surf Sci; 2022 Feb; 716():. PubMed ID: 34737461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces.
    Tchakoua T; Gerrits N; Smeets EWF; Kroes GJ
    J Chem Theory Comput; 2023 Jan; 19(1):245-270. PubMed ID: 36529979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface.
    Morbec JM; Kratzer P
    J Chem Phys; 2017 Jan; 146(3):034702. PubMed ID: 28109219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dispersion correction on the Au(1 1 1)-H2O interface: a first-principles study.
    Nadler R; Sanz JF
    J Chem Phys; 2012 Sep; 137(11):114709. PubMed ID: 22998283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of van der Waals interactions on the chemisorption and physisorption of phenol and phenoxy on metal surfaces.
    Peköz R; Donadio D
    J Chem Phys; 2016 Sep; 145(10):104701. PubMed ID: 27634269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces.
    Carrasco J; Liu W; Michaelides A; Tkatchenko A
    J Chem Phys; 2014 Feb; 140(8):084704. PubMed ID: 24588188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved proton-transfer barriers with van der Waals density functionals: Role of repulsive non-local correlation.
    Seyedraoufi S; Berland K
    J Chem Phys; 2022 Jun; 156(24):244106. PubMed ID: 35778093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.