These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34177040)

  • 1. A hyperspectral approach for recovering agent excretion biodistributions using whole-body fluorescence cryo-imaging.
    Byrd BK; Wirth DJ; Meng B; Strawbridge RS; Davis SC
    Proc SPIE Int Soc Opt Eng; 2021 Mar; 11625():. PubMed ID: 34177040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral imaging and spectral unmixing for improving whole-body fluorescence cryo-imaging.
    Wirth D; Byrd B; Meng B; Strawbridge RR; Samkoe KS; Davis SC
    Biomed Opt Express; 2021 Jan; 12(1):395-408. PubMed ID: 33520389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a novel hyperspectral imaging cryomacrotome for whole body fluorescence imaging.
    Meng B; Byrd BK; Wirth DJ; Strawbridge RR; Davis SC
    Proc SPIE Int Soc Opt Eng; 2020; 11219():. PubMed ID: 34446979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-brain MR-registered cryo-imaging of a porcine-human glioma model to compare contrast agent biodistributions.
    Byrd BK; Duke RB; Fan X; Wirth DJ; Warner WR; Hoopes PJ; Strawbridge RR; Evans LT; Paulsen KD; Davis SC
    Proc SPIE Int Soc Opt Eng; 2022; 11943():. PubMed ID: 36226235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning.
    Smith JT; Ochoa M; Intes X
    Biomed Opt Express; 2020 Jul; 11(7):3857-3874. PubMed ID: 33014571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating uptake of multiple fluorescent contrast agents in brain tumors simultaneously using whole animal multi-spectral cryo-imaging.
    Byrd BK; Wirth DJ; Meng B; Strawbridge RS; Davis SC
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11219():. PubMed ID: 34744247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending immunofluorescence detection limits in whole paraffin-embedded formalin fixed tissues using hyperspectral confocal fluorescence imaging.
    Constantinou P; Dacosta RS; Wilson BC
    J Microsc; 2009 May; 234(2):137-46. PubMed ID: 19397743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for validating depth-resolved biodistributions in topically-stained specimen with multi-channel fluorescence cryo-imaging.
    Byrd BK; Strawbridge RS; Wells W; Barth C; Gibbs S; Davis SC
    Proc SPIE Int Soc Opt Eng; 2021; 11625():. PubMed ID: 34475612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient quantitative hyperspectral image unmixing method for large-scale Raman micro-spectroscopy data analysis.
    Lobanova EG; Lobanov SV
    Anal Chim Acta; 2019 Mar; 1050():32-43. PubMed ID: 30661589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demystifying autofluorescence with excitation-scanning hyperspectral imaging.
    Deal J; Harris B; Martin W; Lall M; Lopez C; Rider P; Boudreaux C; Rich T; Leavesley SJ
    Proc SPIE Int Soc Opt Eng; 2018; 10497():. PubMed ID: 34092890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-Specific Near-Infrared Fluorescence Imaging.
    Owens EA; Henary M; El Fakhri G; Choi HS
    Acc Chem Res; 2016 Sep; 49(9):1731-40. PubMed ID: 27564418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole Mouse Cryo-Imaging.
    Wilson D; Roy D; Steyer G; Gargesha M; Stone M; McKinley E
    Proc SPIE Int Soc Opt Eng; 2008 Jan; 6916():69161I-69161I9. PubMed ID: 19756215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast and effective determination of the biodistribution and subcellular localization of fluorescent immunoliposomes in freshly excised animal organs.
    Tansi FL; Rüger R; Kollmeier AM; Böhm C; Kontermann RE; Teichgraeber UK; Fahr A; Hilger I
    BMC Biotechnol; 2017 Jan; 17(1):8. PubMed ID: 28100205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-multiplexed fluorescence microscopy via photostability contrast.
    Orth A; Ghosh RN; Wilson ER; Doughney T; Brown H; Reineck P; Thompson JG; Gibson BC
    Biomed Opt Express; 2018 Jul; 9(7):2943-2954. PubMed ID: 29984077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique.
    Xu H; Rice BW
    J Biomed Opt; 2009; 14(6):064011. PubMed ID: 20059249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach.
    Muselimyan N; Swift LM; Asfour H; Chahbazian T; Mazhari R; Mercader MA; Sarvazyan NA
    PLoS One; 2016; 11(12):e0167760. PubMed ID: 27930718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the medical hyperspectral imaging systems and unmixing algorithms' in biological tissues.
    Rehman AU; Qureshi SA
    Photodiagnosis Photodyn Ther; 2021 Mar; 33():102165. PubMed ID: 33383204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Representation vis Data-Guided Sparsity for Hyperspectral Image Super-Resolution
    Han XH; Sun Y; Wang J; Shi B; Zheng Y; Chen YW
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-excitation hyperspectral autofluorescence imaging for the exploration of biological samples.
    Ghaffari M; Chateigner-Boutin AL; Guillon F; Devaux MF; Abdollahi H; Duponchel L
    Anal Chim Acta; 2019 Jul; 1062():47-59. PubMed ID: 30947995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.