These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34177258)

  • 1. Evaluation of Explainable Deep Learning Methods for Ophthalmic Diagnosis.
    Singh A; Jothi Balaji J; Rasheed MA; Jayakumar V; Raman R; Lakshminarayanan V
    Clin Ophthalmol; 2021; 15():2573-2581. PubMed ID: 34177258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images.
    Riazi Esfahani P; Reddy AJ; Nawathey N; Ghauri MS; Min M; Wagh H; Tak N; Patel R
    Cureus; 2023 Jul; 15(7):e41615. PubMed ID: 37565126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images.
    Asif S; Amjad K; Qurrat-Ul-Ain
    Interdiscip Sci; 2022 Dec; 14(4):906-916. PubMed ID: 35767116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2009; 9(13):1-22. PubMed ID: 23074517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Retinal Disease Diagnosis with an Interpretable Lightweight CNN Model Resistant to Adversarial Attacks.
    Bhandari M; Shahi TB; Neupane A
    J Imaging; 2023 Oct; 9(10):. PubMed ID: 37888326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Privacy-preserving continual learning methods for medical image classification: a comparative analysis.
    Verma T; Jin L; Zhou J; Huang J; Tan M; Choong BCM; Tan TF; Gao F; Xu X; Ting DS; Liu Y
    Front Med (Lausanne); 2023; 10():1227515. PubMed ID: 37644987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and feasibility with AI-assisted OCT in retinal disorder community screening.
    Bai J; Wan Z; Li P; Chen L; Wang J; Fan Y; Chen X; Peng Q; Gao P
    Front Cell Dev Biol; 2022; 10():1053483. PubMed ID: 36407116
    [No Abstract]   [Full Text] [Related]  

  • 9. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization.
    Hee MR; Baumal CR; Puliafito CA; Duker JS; Reichel E; Wilkins JR; Coker JG; Schuman JS; Swanson EA; Fujimoto JG
    Ophthalmology; 1996 Aug; 103(8):1260-70. PubMed ID: 8764797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization.
    Meyer JH; Larsen PP; Strack C; Harmening WM; Krohne TU; Holz FG; Schmitz-Valckenberg S
    Exp Eye Res; 2019 Jul; 184():162-171. PubMed ID: 31002822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images.
    Alqudah AM
    Med Biol Eng Comput; 2020 Jan; 58(1):41-53. PubMed ID: 31728935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images.
    A P S; Kar S; S G; Gopi VP; Palanisamy P
    Comput Methods Programs Biomed; 2021 Mar; 200():105877. PubMed ID: 33339630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification.
    Mohan R; Ganapathy K; Arunmozhi R
    J Popul Ther Clin Pharmacol; 2022; 29(3):e112-e122. PubMed ID: 36196946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.
    Lin M; Bao G; Sang X; Wu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images.
    Yan Y; Jin K; Gao Z; Huang X; Wang F; Wang Y; Ye J
    Med Phys; 2021 Sep; 48(9):4926-4934. PubMed ID: 34042194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of optical coherence tomography images using a capsule network.
    Tsuji T; Hirose Y; Fujimori K; Hirose T; Oyama A; Saikawa Y; Mimura T; Shiraishi K; Kobayashi T; Mizota A; Kotoku J
    BMC Ophthalmol; 2020 Mar; 20(1):114. PubMed ID: 32192460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathological Neurovascular Unit Mapping onto Multimodal Imaging in Diabetic Macular Edema.
    Murakami T; Ishihara K; Terada N; Nishikawa K; Kawai K; Tsujikawa A
    Medicina (Kaunas); 2023 May; 59(5):. PubMed ID: 37241128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced OCT image captioning system to assist ophthalmologists in detecting and classifying eye diseases.
    Vellakani S; Pushbam I
    J Xray Sci Technol; 2020; 28(5):975-988. PubMed ID: 32597828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.