These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34178041)

  • 81. Genome-Wide Analyses Reveal Footprints of Divergent Selection and Drought Adaptive Traits in Synthetic-Derived Wheats.
    Afzal F; Li H; Gul A; Subhani A; Ali A; Mujeeb-Kazi A; Ogbonnaya F; Trethowan R; Xia X; He Z; Rasheed A
    G3 (Bethesda); 2019 Jun; 9(6):1957-1973. PubMed ID: 31018942
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress.
    Qaseem MF; Qureshi R; Muqaddasi QH; Shaheen H; Kousar R; Röder MS
    PLoS One; 2018; 13(6):e0199121. PubMed ID: 29949622
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Distribution of genes associated with yield potential and water-saving in Chinese Zone II wheat detected by developed functional markers.
    Gao Z; Shi Z; Zhang A; Guo J
    J Genet; 2015 Mar; 94(1):35-42. PubMed ID: 25846875
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers.
    Fu YB; Peterson GW; Yu JK; Gao L; Jia J; Richards KW
    Theor Appl Genet; 2006 May; 112(7):1239-47. PubMed ID: 16465549
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance.
    Babu P; Baranwal DK; Harikrishna ; Pal D; Bharti H; Joshi P; Thiyagarajan B; Gaikwad KB; Bhardwaj SC; Singh GP; Singh A
    Front Plant Sci; 2020; 11():567147. PubMed ID: 33013989
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).
    Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL
    Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306
    [TBL] [Abstract][Full Text] [Related]  

  • 87. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.
    Ma L; Li T; Hao C; Wang Y; Chen X; Zhang X
    Plant Biotechnol J; 2016 May; 14(5):1269-80. PubMed ID: 26480952
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication.
    Liu S; Sehgal SK; Lin M; Li J; Trick HN; Gill BS; Bai G
    New Phytol; 2015 Nov; 208(3):928-35. PubMed ID: 26255630
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The grain Hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny.
    Shaaf S; Sharma R; Baloch FS; Badaeva ED; Knüpffer H; Kilian B; Özkan H
    Mol Genet Genomics; 2016 Jun; 291(3):1259-75. PubMed ID: 26898967
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Phenotypic and Haplotype Diversity among Tetraploid and Hexaploid Wheat Accessions with Potentially Novel Insect Resistance Genes for Wheat Stem Sawfly.
    Cook JP; Blake NK; Heo HY; Martin JM; Weaver DK; Talbert LE
    Plant Genome; 2017 Mar; 10(1):. PubMed ID: 28464069
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat.
    Bhatta M; Morgounov A; Belamkar V; Baenziger PS
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30279375
    [TBL] [Abstract][Full Text] [Related]  

  • 92.
    Zotova L; Shamambaeva N; Lethola K; Alharthi B; Vavilova V; Smolenskaya SE; Goncharov NP; Kurishbayev A; Jatayev S; Gupta NK; Gupta S; Schramm C; Anderson PA; Jenkins CLD; Soole KL; Shavrukov Y
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167455
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Genetic diversity analysis of abiotic stress response gene TaSnRK2.7-A in common wheat.
    Zhang H; Mao X; Zhang J; Chang X; Wang C; Jing R
    Genetica; 2011 Jun; 139(6):743-53. PubMed ID: 21637995
    [TBL] [Abstract][Full Text] [Related]  

  • 94.
    Cao L; Li T; Geng S; Zhang Y; Pan Y; Zhang X; Wang F; Hao C
    Front Plant Sci; 2023; 14():1178624. PubMed ID: 37089636
    [TBL] [Abstract][Full Text] [Related]  

  • 95. RNA-seq analysis revealed considerable genetic diversity and enabled the development of specific KASP markers for
    Zhang H; Zeng C; Li L; Zhu W; Xu L; Wang Y; Zeng J; Fan X; Sha L; Wu D; Cheng Y; Zhang H; Chen G; Zhou Y; Kang H
    Front Plant Sci; 2023; 14():1166710. PubMed ID: 37063223
    [No Abstract]   [Full Text] [Related]  

  • 96. Genetic basis analysis of key Loci in 23 Yannong series wheat cultivars/lines.
    Xiao L; Jin Y; Liu W; Liu J; Song H; Li D; Zheng J; Wang D; Yin Y; Liu Y; Wang H; Li L; Sun N; Liu M; Ma P
    Front Plant Sci; 2022; 13():1037027. PubMed ID: 36299791
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Allelic variation of TaWD40-4B.1 contributes to drought tolerance by modulating catalase activity in wheat.
    Tian G; Wang S; Wu J; Wang Y; Wang X; Liu S; Han D; Xia G; Wang M
    Nat Commun; 2023 Mar; 14(1):1200. PubMed ID: 36864053
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Validation of KASP markers associated with cassava mosaic disease resistance, storage root dry matter and provitamin A carotenoid contents in Ugandan cassava germplasm.
    Esuma W; Eyoo O; Gwandu F; Mukasa S; Alicai T; Ozimati A; Nuwamanya E; Rabbi I; Kawuki R
    Front Plant Sci; 2022; 13():1017275. PubMed ID: 36507387
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Development of Breeder-Friendly KASP Markers from Genome-Wide Association Studies Results.
    Makhoul M; Obermeier C
    Methods Mol Biol; 2022; 2481():287-310. PubMed ID: 35641771
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Genetic structure of Argentinean hexaploid wheat germplasm.
    Vanzetti LS; Yerkovich N; Chialvo E; Lombardo L; Vaschetto L; Helguera M
    Genet Mol Biol; 2013 Sep; 36(3):391-9. PubMed ID: 24130447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.