These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34179025)

  • 1. Massive Gene Loss and Function Shuffling in Appendicularians Stretch the Boundaries of Chordate Wnt Family Evolution.
    Martí-Solans J; Godoy-Marín H; Diaz-Gracia M; Onuma TA; Nishida H; Albalat R; Cañestro C
    Front Cell Dev Biol; 2021; 9():700827. PubMed ID: 34179025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates.
    Almazán A; Ferrández-Roldán A; Albalat R; Cañestro C
    Dev Biol; 2019 Apr; 448(2):260-270. PubMed ID: 30217598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wnt evolution and function shuffling in liberal and conservative chordate genomes.
    Somorjai IML; Martí-Solans J; Diaz-Gracia M; Nishida H; Imai KS; Escrivà H; Cañestro C; Albalat R
    Genome Biol; 2018 Jul; 19(1):98. PubMed ID: 30045756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunicates and not cephalochordates are the closest living relatives of vertebrates.
    Delsuc F; Brinkmann H; Chourrout D; Philippe H
    Nature; 2006 Feb; 439(7079):965-8. PubMed ID: 16495997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiopharyngeal deconstruction and ancestral tunicate sessility.
    Ferrández-Roldán A; Fabregà-Torrus M; Sánchez-Serna G; Duran-Bello E; Joaquín-Lluís M; Bujosa P; Plana-Carmona M; Garcia-Fernàndez J; Albalat R; Cañestro C
    Nature; 2021 Nov; 599(7885):431-435. PubMed ID: 34789899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development.
    Ferrández-Roldán A; Martí-Solans J; Cañestro C; Albalat R
    Results Probl Cell Differ; 2019; 68():63-105. PubMed ID: 31598853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the central nervous system in the larvacean Oikopleura dioica and the evolution of the chordate brain.
    Cañestro C; Bassham S; Postlethwait J
    Dev Biol; 2005 Sep; 285(2):298-315. PubMed ID: 16111672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the appendicularian Oikopleura dioica: culture, genome, and cell lineages.
    Nishida H
    Dev Growth Differ; 2008 Jun; 50 Suppl 1():S239-56. PubMed ID: 18494706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary volatile Cysteines and protein disorder in the fast evolving tunicate Oikopleura dioica.
    Berná L; Alvarez-Valin F
    Mar Genomics; 2015 Dec; 24 Pt 1():47-54. PubMed ID: 26228312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunicates Illuminate the Enigmatic Evolution of Chordate Metallothioneins by Gene Gains and Losses, Independent Modular Expansions, and Functional Convergences.
    Calatayud S; Garcia-Risco M; Palacios Ò; Capdevila M; Cañestro C; Albalat R
    Mol Biol Evol; 2021 Sep; 38(10):4435-4448. PubMed ID: 34146103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and expression profiling of the Wnt gene family in three abalone species.
    Zhang Q; Fu Y; Zhang Y; Liu H
    Genes Genomics; 2024 Dec; 46(12):1363-1374. PubMed ID: 39397130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapidly evolving lamins in a chordate, Oikopleura dioica, with unusual nuclear architecture.
    Clarke T; Bouquet JM; Fu X; Kallesøe T; Schmid M; Thompson EM
    Gene; 2007 Jul; 396(1):159-69. PubMed ID: 17449201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coelimination and Survival in Gene Network Evolution: Dismantling the RA-Signaling in a Chordate.
    Martí-Solans J; Belyaeva OV; Torres-Aguila NP; Kedishvili NY; Albalat R; Cañestro C
    Mol Biol Evol; 2016 Sep; 33(9):2401-16. PubMed ID: 27406791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary diversification of secondary mechanoreceptor cells in tunicata.
    Rigon F; Stach T; Caicci F; Gasparini F; Burighel P; Manni L
    BMC Evol Biol; 2013 Jun; 13():112. PubMed ID: 23734698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular Evolution and Population Variability of
    Calatayud S; Garcia-Risco M; Capdevila M; Cañestro C; Palacios Ò; Albalat R
    Front Cell Dev Biol; 2021; 9():702688. PubMed ID: 34277643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage-specific evolution of cnidarian Wnt ligands.
    Hensel K; Lotan T; Sanders SM; Cartwright P; Frank U
    Evol Dev; 2014 Sep; 16(5):259-69. PubMed ID: 25123972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis-regulatory modules.
    Yasuoka Y
    Dev Growth Differ; 2020 Jun; 62(5):279-300. PubMed ID: 32479656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphioxus and tunicates as evolutionary model systems.
    Schubert M; Escriva H; Xavier-Neto J; Laudet V
    Trends Ecol Evol; 2006 May; 21(5):269-77. PubMed ID: 16697913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The simple tail of chordates: phylogenetic significance of appendicularians.
    Nishino A; Satoh N
    Genesis; 2001 Jan; 29(1):36-45. PubMed ID: 11135460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica.
    Volff JN; Lehrach H; Reinhardt R; Chourrout D
    Mol Biol Evol; 2004 Nov; 21(11):2022-33. PubMed ID: 15254255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.