These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34179104)

  • 21. Phenotyping Flowering in Canola (
    Zhang T; Vail S; Duddu HSN; Parkin IAP; Guo X; Johnson EN; Shirtliffe SJ
    Front Plant Sci; 2021; 12():686332. PubMed ID: 34220907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of Pine Wilt Nematode from Drone Images Using UAV.
    Sun Z; Ibrayim M; Hamdulla A
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional branch segmentation and phenotype extraction of maize tassel based on deep learning.
    Zhang W; Wu S; Wen W; Lu X; Wang C; Gou W; Li Y; Guo X; Zhao C
    Plant Methods; 2023 Aug; 19(1):76. PubMed ID: 37528454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.
    Tang T; Zhou S; Deng Z; Zou H; Lei L
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TIPS: a system for automated image-based phenotyping of maize tassels.
    Gage JL; Miller ND; Spalding EP; Kaeppler SM; de Leon N
    Plant Methods; 2017; 13():21. PubMed ID: 28373892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Image-Based Phenotyping of Flowering Intensity in Cool-Season Crops.
    Zhang C; Craine WA; McGee RJ; Vandemark GJ; Davis JB; Brown J; Hulbert SH; Sankaran S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DeepFruits: A Fruit Detection System Using Deep Neural Networks.
    Sa I; Ge Z; Dayoub F; Upcroft B; Perez T; McCool C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vehicle Detection From UAV Imagery With Deep Learning: A Review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6047-6067. PubMed ID: 34029200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD.
    Li M; Zhang Z; Lei L; Wang X; Guo X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying and mapping individual medicinal plant Lamiophlomis rotata at high elevations by using unmanned aerial vehicles and deep learning.
    Ding R; Luo J; Wang C; Yu L; Yang J; Wang M; Zhong S; Gu R
    Plant Methods; 2023 Apr; 19(1):38. PubMed ID: 37005675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection.
    Cheng G; Han J; Zhou P; Xu D
    IEEE Trans Image Process; 2019 Jan; 28(1):265-278. PubMed ID: 30235112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fine-tuned YOLOv5 deep learning approach for real-time house number detection.
    Taşyürek M; Öztürk C
    PeerJ Comput Sci; 2023; 9():e1453. PubMed ID: 37547390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RGDiNet: Efficient Onboard Object Detection with Faster R-CNN for Air-to-Ground Surveillance.
    Kim J; Cho J
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coffee Flower Identification Using Binarization Algorithm Based on Convolutional Neural Network for Digital Images.
    Wei P; Jiang T; Peng H; Jin H; Sun H; Chai D; Huang J
    Plant Phenomics; 2020; 2020():6323965. PubMed ID: 33313561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest.
    Johansen K; Morton MJL; Malbeteau Y; Aragon B; Al-Mashharawi S; Ziliani MG; Angel Y; Fiene G; Negrão S; Mousa MAA; Tester MA; McCabe MF
    Front Artif Intell; 2020; 3():28. PubMed ID: 33733147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model.
    Sun J; Di L; Sun Z; Shen Y; Lai Z
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31600963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
    Ren S; He K; Girshick R; Sun J
    IEEE Trans Pattern Anal Mach Intell; 2017 Jun; 39(6):1137-1149. PubMed ID: 27295650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rodent hole detection in a typical steppe ecosystem using UAS and deep learning.
    Du M; Wang D; Liu S; Lv C; Zhu Y
    Front Plant Sci; 2022; 13():992789. PubMed ID: 36589056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.