BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34179295)

  • 1. Centromere Chromosome Orientation Fluorescent
    Giunta S
    Bio Protoc; 2018 Apr; 8(7):e2792. PubMed ID: 34179295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T.
    Giunta S; Funabiki H
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1928-1933. PubMed ID: 28167779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of the three-dimensional structure of the human centromere in mitotic chromosomes by superresolution microscopy.
    Di Tommaso E; de Turris V; Choppakatla P; Funabiki H; Giunta S
    Mol Biol Cell; 2023 May; 34(6):ar61. PubMed ID: 36947236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO-FISH, COD-FISH, ReD-FISH, SKY-FISH.
    Williams ES; Cornforth MN; Goodwin EH; Bailey SM
    Methods Mol Biol; 2011; 735():113-24. PubMed ID: 21461816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetitive Fragile Sites: Centromere Satellite DNA As a Source of Genome Instability in Human Diseases.
    Black EM; Giunta S
    Genes (Basel); 2018 Dec; 9(12):. PubMed ID: 30544645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centromere mitotic recombination in mammalian cells.
    Jaco I; Canela A; Vera E; Blasco MA
    J Cell Biol; 2008 Jun; 181(6):885-92. PubMed ID: 18541703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis.
    Yan R; McKee BD
    PLoS Genet; 2013; 9(7):e1003637. PubMed ID: 23874232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei.
    Schubert V; Kim YM; Berr A; Fuchs J; Meister A; Marschner S; Schubert I
    Mol Genet Genomics; 2007 Aug; 278(2):167-76. PubMed ID: 17522894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome orientation fluorescence in situ hybridization to study sister chromatid segregation in vivo.
    Falconer E; Chavez E; Henderson A; Lansdorp PM
    Nat Protoc; 2010 Jul; 5(7):1362-77. PubMed ID: 20595964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing locus-specific sister chromatid exchange reveals differential patterns of replication stress-induced fragile site breakage.
    Waisertreiger I; Popovich K; Block M; Anderson KR; Barlow JH
    Oncogene; 2020 Feb; 39(6):1260-1272. PubMed ID: 31636383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme reduction of chromosome-specific alpha-satellite array is unusually common in human chromosome 21.
    Lo AW; Liao GC; Rocchi M; Choo KH
    Genome Res; 1999 Oct; 9(10):895-908. PubMed ID: 10523519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation.
    Warburton PE; Cooke HJ
    Chromosoma; 1997 Aug; 106(3):149-59. PubMed ID: 9233988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Satellite DNA at the Centromere is Dispensable for Segregation Fidelity.
    Roberti A; Bensi M; Mazzagatti A; Piras FM; Nergadze SG; Giulotto E; Raimondi E
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31226862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sister chromatid exchange assessment by chromosome orientation-fluorescence in situ hybridization on the bovine sex chromosomes and autosomes 16 and 26.
    Revay T; King WA
    Cytogenet Genome Res; 2012; 136(2):107-16. PubMed ID: 22286126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH).
    Nitta H; Hauss-Wegrzyniak B; Lehrkamp M; Murillo AE; Gaire F; Farrell M; Walk E; Penault-Llorca F; Kurosumi M; Dietel M; Wang L; Loftus M; Pettay J; Tubbs RR; Grogan TM
    Diagn Pathol; 2008 Oct; 3():41. PubMed ID: 18945356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences.
    Shang WH; Hori T; Toyoda A; Kato J; Popendorf K; Sakakibara Y; Fujiyama A; Fukagawa T
    Genome Res; 2010 Sep; 20(9):1219-28. PubMed ID: 20534883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast-FISH technique for rapid, simultaneous labeling of all human centromeres.
    Durm M; Sorokine-Durm I; Haar FM; Hausmann M; Ludwig H; Voisin P; Cremer C
    Cytometry; 1998 Mar; 31(3):153-62. PubMed ID: 9515714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Relationship between Spontaneous Sister Chromatid Exchange and Genome Instability in Two Cryptic Species of Non-Human Primates.
    Nieves M; Puntieri F; Bailey SM; Mudry MD; Maranon DG
    Animals (Basel); 2023 Feb; 13(3):. PubMed ID: 36766399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.).
    He Q; Cai Z; Hu T; Liu H; Bao C; Mao W; Jin W
    BMC Plant Biol; 2015 Apr; 15():105. PubMed ID: 25928652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome Orientation fluorescence in situ hybridization or strand-specific FISH.
    Bailey SM; Williams ES; Cornforth MN; Goodwin EH
    Methods Mol Biol; 2010; 659():173-83. PubMed ID: 20809311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.