These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34179768)

  • 1. NeuroSim Simulator for Compute-in-Memory Hardware Accelerator: Validation and Benchmark.
    Lu A; Peng X; Li W; Jiang H; Yu S
    Front Artif Intell; 2021; 4():659060. PubMed ID: 34179768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Power DNN Accelerator Enabled by a Novel Staircase RRAM Array.
    Veluri H; Chand U; Li Y; Tang B; Thean AV
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4416-4427. PubMed ID: 34669580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance estimation for the memristor-based computing-in-memory implementation of extremely factorized network for real-time and low-power semantic segmentation.
    Dong S; Fan Z; Chen Y; Chen K; Qin M; Zeng M; Lu X; Zhou G; Gao X; Liu JM
    Neural Netw; 2023 Mar; 160():202-215. PubMed ID: 36657333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Accelerators' Configuration Space Exploration Effect on Performance and Resource Utilization: A Gemmini Case Study.
    Gookyi DAN; Lee E; Kim K; Jang SJ; Lee SS
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SRAM-Based CIM Architecture Design for Event Detection.
    Sulaiman MBG; Lin JY; Li JB; Shih CM; Juang KC; Lu CC
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compute-in-memory chip based on resistive random-access memory.
    Wan W; Kubendran R; Schaefer C; Eryilmaz SB; Zhang W; Wu D; Deiss S; Raina P; Qian H; Gao B; Joshi S; Wu H; Wong HP; Cauwenberghs G
    Nature; 2022 Aug; 608(7923):504-512. PubMed ID: 35978128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compute in-Memory with Non-Volatile Elements for Neural Networks: A Review from a Co-Design Perspective.
    Haensch W; Raghunathan A; Roy K; Chakrabarti B; Phatak CM; Wang C; Guha S
    Adv Mater; 2023 Sep; 35(37):e2204944. PubMed ID: 36579797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices.
    Zahari F; Pérez E; Mahadevaiah MK; Kohlstedt H; Wenger C; Ziegler M
    Sci Rep; 2020 Sep; 10(1):14450. PubMed ID: 32879397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SalvageDNN: salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping.
    Abdullah Hanif M; Shafique M
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190164. PubMed ID: 31865875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems.
    Zhang Q; Wu H; Yao P; Zhang W; Gao B; Deng N; Qian H
    Neural Netw; 2018 Dec; 108():217-223. PubMed ID: 30216871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable Compute-In-Memory on Field-Programmable Ferroelectric Diodes.
    Liu X; Ting J; He Y; Fiagbenu MMA; Zheng J; Wang D; Frost J; Musavigharavi P; Esteves G; Kisslinger K; Anantharaman SB; Stach EA; Olsson RH; Jariwala D
    Nano Lett; 2022 Sep; 22(18):7690-7698. PubMed ID: 36121208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Asymmetric Weight Update on Neural Network Training With Tiki-Taka Algorithm.
    Lee C; Noh K; Ji W; Gokmen T; Kim S
    Front Neurosci; 2021; 15():767953. PubMed ID: 35069098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks.
    Kim MK; Kim IJ; Lee JS
    Sci Adv; 2022 Apr; 8(14):eabm8537. PubMed ID: 35394830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTA-GAN: A Computation-Efficient Accelerator for GANs With Fast Transformation Algorithm.
    Mao W; Yang P; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):2978-2992. PubMed ID: 34534090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices.
    Spoon K; Tsai H; Chen A; Rasch MJ; Ambrogio S; Mackin C; Fasoli A; Friz AM; Narayanan P; Stanisavljevic M; Burr GW
    Front Comput Neurosci; 2021; 15():675741. PubMed ID: 34290595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NeuroSim--the prototype of a neurosurgical training simulator.
    Beier F; Diederich S; Schmieder K; Männer R
    Stud Health Technol Inform; 2011; 163():51-6. PubMed ID: 21335757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An aneurysm clipping training module for the neurosurgical training simulator NeuroSim.
    Beier F; Sismanidis E; Stadie A; Schmieder K; Männer R
    Stud Health Technol Inform; 2012; 173():42-7. PubMed ID: 22356954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Network Training With Asymmetric Crosspoint Elements.
    Onen M; Gokmen T; Todorov TK; Nowicki T; Del Alamo JA; Rozen J; Haensch W; Kim S
    Front Artif Intell; 2022; 5():891624. PubMed ID: 35615470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithm for Training Neural Networks on Resistive Device Arrays.
    Gokmen T; Haensch W
    Front Neurosci; 2020; 14():103. PubMed ID: 32174807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Biologically Plausible Implementation of Binarized Neural Networks With Differential Hafnium Oxide Resistive Memory Arrays.
    Hirtzlin T; Bocquet M; Penkovsky B; Klein JO; Nowak E; Vianello E; Portal JM; Querlioz D
    Front Neurosci; 2019; 13():1383. PubMed ID: 31998059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.