These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34179770)

  • 1. Measuring Urban Vibrancy of Residential Communities Using Big Crowdsourced Geotagged Data.
    Wang P; Liu K; Wang D; Fu Y
    Front Big Data; 2021; 4():690970. PubMed ID: 34179770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do Vibrant Places Promote Active Living? Analyzing Local Vibrancy, Running Activity, and Real Estate Prices in Beijing.
    Lai Y; Li J; Zhang J; Yan L; Liu Y
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling urban vibrancy with mobile phone and OpenStreetMap data.
    Botta F; Gutiérrez-Roig M
    PLoS One; 2021; 16(6):e0252015. PubMed ID: 34077441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Urban Vibrancy on an Urban Eco-Environment: Case Study on Wuhan City.
    Yu R; Zeng C; Chang M; Bao C; Tang M; Xiong F
    Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35328888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Did the Built Environment Affect Urban Vibrancy? A Big Data Approach to Post-Disaster Revitalization Assessment.
    Gong H; Wang X; Wang Z; Liu Z; Li Q; Zhang Y
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Relationship between Urban Vibrancy and Built Environment: An Empirical Study from an Emerging City in an Arid Region.
    Fu R; Zhang X; Yang D; Cai T; Zhang Y
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33435212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an Urban Vibrancy Model: A Soundscape Approach.
    Aletta F; Kang J
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30103394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intergenerational differences in the urban vibrancy of TOD: Impacts of the built environment on the activities of different age groups.
    Yu B; Cui X; Liu R; Luo P; Tian F; Yang T
    Front Public Health; 2022; 10():994835. PubMed ID: 36148332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring non-linear built environment effects on urban vibrancy under COVID-19: The case of Hong Kong.
    Xiao L; Liu J
    Appl Geogr; 2023 Jun; 155():102960. PubMed ID: 37077238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of Built Environment on Urban Vitality: Regression Analyses of Beijing and Chengdu, China.
    Lu S; Shi C; Yang X
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31756945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing Urban Patterns with Antenna Mappings: The Case of Santiago, Chile.
    Graells-Garrido E; Peredo O; García J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27428979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the Spatial Spread of COVID-19 and Effectiveness of Control Measures Through Human Movement Data: Proposal for a Predictive Model Using Big Data Analytics.
    Li Z; Li X; Porter D; Zhang J; Jiang Y; Olatosi B; Weissman S
    JMIR Res Protoc; 2020 Dec; 9(12):e24432. PubMed ID: 33301418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Community vibrancy and its relationship with safety in Philadelphia.
    Sinchaisri WP; Jensen ST
    PLoS One; 2021; 16(12):e0257530. PubMed ID: 34972104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
    Pu J; Teng Z; Gong R; Wen C; Xu Y
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Big data analytics and smart cities: applications, challenges, and opportunities.
    Cesario E
    Front Big Data; 2023; 6():1149402. PubMed ID: 37252127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial planning of urban communities via deep reinforcement learning.
    Zheng Y; Lin Y; Zhao L; Wu T; Jin D; Li Y
    Nat Comput Sci; 2023 Sep; 3(9):748-762. PubMed ID: 38177774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia.
    Ramadona AL; Tozan Y; Lazuardi L; Rocklöv J
    PLoS Negl Trop Dis; 2019 Apr; 13(4):e0007298. PubMed ID: 30986218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering Cities over Features Extracted from Multiple Virtual Sensors Measuring Micro-Level Activity Patterns Allows One to Discriminate Large-Scale City Characteristics.
    Muñoz-Cancino R; Ríos SA; Graña M
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.
    Liu Y; Sui Z; Kang C; Gao Y
    PLoS One; 2014; 9(1):e86026. PubMed ID: 24465849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning Social Relations and Spatiotemporal Trajectories for Next Check-in Inference.
    Liang W; Zhang W
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; 34(4):1789-1799. PubMed ID: 33079672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.