These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 34180120)

  • 1. Structural Basis for Isomerization Reactions in Fungal Tetrahydroxanthone Biosynthesis and Diversification.
    Yang J; Mori T; Wei X; Matsuda Y; Abe I
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19458-19465. PubMed ID: 34180120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Fungal Strategy for Tetrahydroxanthone Biosynthesis and Diversification.
    Wei X; Matsuda Y
    Org Lett; 2020 Mar; 22(5):1919-1923. PubMed ID: 32105084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total Synthesis and Structural Determination of the Dimeric Tetrahydroxanthone Ascherxanthone A.
    Xiao Z; Li Y; Gao S
    Org Lett; 2017 Apr; 19(7):1834-1837. PubMed ID: 28357853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous Biosynthesis of Tetrahydroxanthone Dimers: Determination of Key Factors for Selective or Divergent Synthesis.
    Wei X; Chen X; Chen L; Yan D; Wang WG; Matsuda Y
    J Nat Prod; 2021 May; 84(5):1544-1549. PubMed ID: 33891392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds.
    Forouhar F; Hussain M; Farid R; Benach J; Abashidze M; Edstrom WC; Vorobiev SM; Xiao R; Acton TB; Fu Z; Kim JJ; Miziorko HM; Montelione GT; Hunt JF
    J Biol Chem; 2006 Mar; 281(11):7533-45. PubMed ID: 16330546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for the unusual ring reconstruction in fungal meroterpenoid biogenesis.
    Mori T; Iwabuchi T; Hoshino S; Wang H; Matsuda Y; Abe I
    Nat Chem Biol; 2017 Oct; 13(10):1066-1073. PubMed ID: 28759016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual dimeric tetrahydroxanthone derivatives from Aspergillus lentulus and the determination of their axial chiralities.
    Li TX; Yang MH; Wang Y; Wang XB; Luo J; Luo JG; Kong LY
    Sci Rep; 2016 Dec; 6():38958. PubMed ID: 27941865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Characterization of Neosartorin Biosynthesis Provides Insight into Heterodimeric Natural Product Generation.
    Matsuda Y; Gotfredsen CH; Larsen TO
    Org Lett; 2018 Nov; 20(22):7197-7200. PubMed ID: 30394754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis.
    Komiya D; Hori A; Ishida T; Igarashi K; Samejima M; Koseki T; Fushinobu S
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor.
    Wu ZH; Liu D; Xu Y; Chen JL; Lin WH
    Chin J Nat Med; 2018 Mar; 16(3):219-224. PubMed ID: 29576058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization.
    Crawford JM; Korman TP; Labonte JW; Vagstad AL; Hill EA; Kamari-Bidkorpeh O; Tsai SC; Townsend CA
    Nature; 2009 Oct; 461(7267):1139-43. PubMed ID: 19847268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reaction pathway of the isomerization of D-xylose catalyzed by the enzyme D-xylose isomerase: a theoretical study.
    Hu H; Liu H; Shi Y
    Proteins; 1997 Apr; 27(4):545-55. PubMed ID: 9141134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structure of a novel L-ribose isomerase acting on a non-natural sugar L-ribose as its ideal substrate.
    Yoshida H; Yoshihara A; Teraoka M; Terami Y; Takata G; Izumori K; Kamitori S
    FEBS J; 2014 Jul; 281(14):3150-64. PubMed ID: 24846739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the formation of acylalkylpyrones from two β-ketoacyl units by the fungal type III polyketide synthase CsyB.
    Mori T; Yang D; Matsui T; Hashimoto M; Morita H; Fujii I; Abe I
    J Biol Chem; 2015 Feb; 290(8):5214-5225. PubMed ID: 25564614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A radical access to highly functionalized tetrahydroxanthones.
    Meister AC; Nieger M; Bräse S
    Chemistry; 2013 Aug; 19(33):10836-9. PubMed ID: 23828509
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidative cyclization of
    Lahham M; Pavkov-Keller T; Fuchs M; Niederhauser J; Chalhoub G; Daniel B; Kroutil W; Gruber K; Macheroux P
    J Biol Chem; 2018 Nov; 293(44):17021-17032. PubMed ID: 30194285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose.
    Whitlow M; Howard AJ; Finzel BC; Poulos TL; Winborne E; Gilliland GL
    Proteins; 1991; 9(3):153-73. PubMed ID: 2006134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus
    Yu G; Wu G; Sun Z; Zhang X; Che Q; Gu Q; Zhu T; Li D; Zhang G
    Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30223483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bisubstrate specificity in histidine/tryptophan biosynthesis isomerase from Mycobacterium tuberculosis by active site metamorphosis.
    Due AV; Kuper J; Geerlof A; von Kries JP; Wilmanns M
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3554-9. PubMed ID: 21321225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray, NMR, and mutational studies of the catalytic cycle of the GDP-mannose mannosyl hydrolase reaction.
    Gabelli SB; Azurmendi HF; Bianchet MA; Amzel LM; Mildvan AS
    Biochemistry; 2006 Sep; 45(38):11290-303. PubMed ID: 16981689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.