BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34180193)

  • 1. [Robotic arm control system based on augmented reality brain-computer interface and computer vision].
    Chen X; Li K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):483-491. PubMed ID: 34180193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm.
    Chen X; Huang X; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3140-3147. PubMed ID: 33196442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm.
    Chen X; Zhao B; Wang Y; Gao X
    J Neural Eng; 2019 Apr; 16(2):026012. PubMed ID: 30523962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain-computer interface.
    Chen L; Chen P; Zhao S; Luo Z; Chen W; Pei Y; Zhao H; Jiang J; Xu M; Yan Y; Yin E
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34654000
    [No Abstract]   [Full Text] [Related]  

  • 5. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 7. An SSVEP-BCI in Augmented Reality.
    Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared Three-Dimensional Robotic Arm Control Based on Asynchronous BCI and Computer Vision.
    Zhou Y; Yu T; Gao W; Huang W; Lu Z; Huang Q; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3163-3175. PubMed ID: 37498753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BCI Control of a Robotic Arm Based on SSVEP With Moving Stimuli for Reach and Grasp Tasks.
    Ai J; Meng J; Mai X; Zhu X
    IEEE J Biomed Health Inform; 2023 Aug; 27(8):3818-3829. PubMed ID: 37200132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 12. Towards BCI-Based Interfaces for Augmented Reality: Feasibility, Design and Evaluation.
    Si-Mohammed H; Petit J; Jeunet C; Argelaguet F; Spindler F; Evain A; Roussel N; Casiez G; Lecuyer A
    IEEE Trans Vis Comput Graph; 2020 Mar; 26(3):1608-1621. PubMed ID: 30295623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assistance Device Based on SSVEP-BCI Online to Control a 6-DOF Robotic Arm.
    Albán-Escobar M; Navarrete-Arroyo P; De la Cruz-Guevara DR; Tobar-Quevedo J
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
    Quiles E; Dadone J; Chio N; García E
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine-vision fused brain machine interface based on dynamic augmented reality visual stimulation.
    Zhang D; Liu S; Wang K; Zhang J; Chen D; Zhang Y; Nie L; Yang J; Shinntarou F; Wu J; Yan T
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34607320
    [No Abstract]   [Full Text] [Related]  

  • 18. A CNN-based multi-target fast classification method for AR-SSVEP.
    Zhao X; Du Y; Zhang R
    Comput Biol Med; 2022 Feb; 141():105042. PubMed ID: 34802710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation.
    Sakkalis V; Krana M; Farmaki C; Bourazanis C; Gaitatzis D; Pediaditis M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2960-2969. PubMed ID: 36269910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P300 Brain-Computer Interface-Based Drone Control in Virtual and Augmented Reality.
    Kim S; Lee S; Kang H; Kim S; Ahn M
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.