These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34180443)

  • 1. Lower limb rehabilitation robotics: The current understanding and technology.
    Bhardwaj S; Khan AA; Muzammil M
    Work; 2021; 69(3):775-793. PubMed ID: 34180443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reimagining robotic walkers for real-world outdoor play environments with insights from legged robots: a scoping review.
    Stewart-Height A; Koditschek DE; Johnson MJ
    Disabil Rehabil Assist Technol; 2023 Aug; 18(6):798-818. PubMed ID: 34087079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: A systematic review.
    Shakti D; Mathew L; Kumar N; Kataria C
    Biosens Bioelectron; 2018 Oct; 117():403-415. PubMed ID: 29960851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.
    Resquín F; Cuesta Gómez A; Gonzalez-Vargas J; Brunetti F; Torricelli D; Molina Rueda F; Cano de la Cuerda R; Miangolarra JC; Pons JL
    Med Eng Phys; 2016 Nov; 38(11):1279-1288. PubMed ID: 27692878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preliminary Study on Current Research Status and Clinical Application of Lower Limb Rehabilitation Robot Mechanisms].
    Gao C; Liu F; Jiang H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jan; 48(1):30-37. PubMed ID: 38384214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restorative rehabilitation robotics to promote function, independence and dignity: users' perspectives on clinical applications.
    Hampshire L; Dehghani-Sanij A; O'Connor RJ
    J Med Eng Technol; 2022 Aug; 46(6):527-535. PubMed ID: 35730525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review.
    Khalid S; Alnajjar F; Gochoo M; Renawi A; Shimoda S
    Disabil Rehabil Assist Technol; 2023 Jul; 18(5):658-672. PubMed ID: 33861684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experiences of patients who had a stroke and rehabilitation professionals with upper limb rehabilitation robots: a qualitative systematic review protocol.
    Chockalingam M; Vasanthan LT; Balasubramanian S; Sriram V
    BMJ Open; 2022 Sep; 12(9):e065177. PubMed ID: 36123077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caregiver and social assistant robot for rehabilitation and coaching for the elderly.
    Pérez PJ; Garcia-Zapirain B; Mendez-Zorrilla A
    Technol Health Care; 2015; 23(3):351-7. PubMed ID: 25669209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of cable-driven rehabilitation devices.
    Xiong H; Diao X
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):885-897. PubMed ID: 31287340
    [No Abstract]   [Full Text] [Related]  

  • 15. Robotic devices for paediatric rehabilitation: a review of design features.
    Gonzalez A; Garcia L; Kilby J; McNair P
    Biomed Eng Online; 2021 Sep; 20(1):89. PubMed ID: 34488777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of assistive devices for the prevention of pressure ulcers: an engineering perspective.
    Mansouri M; Krishnan G; McDonagh DC; Zallek CM; Hsiao-Wecksler ET
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1511-1530. PubMed ID: 37101406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotics in Lower-Limb Rehabilitation after Stroke.
    Zhang X; Yue Z; Wang J
    Behav Neurol; 2017; 2017():3731802. PubMed ID: 28659660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot applications for autism: a comprehensive review.
    Saleh MA; Hanapiah FA; Hashim H
    Disabil Rehabil Assist Technol; 2021 Aug; 16(6):580-602. PubMed ID: 32706602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.