These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34180680)

  • 21. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Equilibrium contact angles of liquid droplets on ideal rough solids.
    Kang HC; Jacobi AM
    Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Surface Modifications in Oxygen Plasma-Treated Teflon AF1600.
    Xiang Y; Fulmek P; Sauer M; Foelske A; Schmid U
    Langmuir; 2024 Mar; 40(9):4779-4788. PubMed ID: 38381396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contact Angles and Hysteresis on Soft Surfaces.
    Extrand CW; Kumagai Y
    J Colloid Interface Sci; 1996 Dec; 184(1):191-200. PubMed ID: 8954654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What Can Probing Liquid-Air Menisci Inside Nanopores Teach Us About Macroscopic Wetting Phenomena?
    Zhao B; Jia Y; Xu Y; Bonaccurso E; Deng X; Auernhammer GK; Chen L
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6897-6905. PubMed ID: 33523651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-fluid wetting behavior of a hydrophobic silicon nanowire array.
    Kim Y; Chung Y; Tian Y; Carraro C; Maboudian R
    Langmuir; 2014 Nov; 30(44):13330-7. PubMed ID: 25356959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces.
    Kanungo M; Mettu S; Law KY; Daniel S
    Langmuir; 2014 Jul; 30(25):7358-68. PubMed ID: 24911256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2016 Nov; 481():82-90. PubMed ID: 27454031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slip-stick wetting and large contact angle hysteresis on wrinkled surfaces.
    Bukowsky C; Torres JM; Vogt BD
    J Colloid Interface Sci; 2011 Feb; 354(2):825-31. PubMed ID: 21145561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes.
    Szewczyk PK; Ura DP; Metwally S; Knapczyk-Korczak J; Gajek M; Marzec MM; Bernasik A; Stachewicz U
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wetting and wetting transitions on copper-based super-hydrophobic surfaces.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC
    Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomimetic Approach for the Elaboration of Highly Hydrophobic Surfaces: Study of the Links between Morphology and Wettability.
    Legrand Q; Benayoun S; Valette S
    Biomimetics (Basel); 2021 Jun; 6(2):. PubMed ID: 34201259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis.
    Hozumi A; McCarthy TJ
    Langmuir; 2010 Feb; 26(4):2567-73. PubMed ID: 20030348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low cost fabrication of a superhydrophobic V-grooved polymer surface.
    Hurst SM; Farshchian B; Brumfield L; Ok JT; Choi J; Kim J; Parkl S
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1884-7. PubMed ID: 23755612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis.
    Hozumi A; Cheng DF; Yagihashi M
    J Colloid Interface Sci; 2011 Jan; 353(2):582-7. PubMed ID: 20970808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water contact angles and hysteresis of polyamide surfaces.
    Extrand CW
    J Colloid Interface Sci; 2002 Apr; 248(1):136-42. PubMed ID: 16290514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.