These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34181000)

  • 1. Evaluation of in silico tools for the prediction of protein and peptide aggregation on diverse datasets.
    Prabakaran R; Rawat P; Kumar S; Gromiha MM
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34181000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.
    Thangakani AM; Nagarajan R; Kumar S; Sakthivel R; Velmurugan D; Gromiha MM
    PLoS One; 2016; 11(4):e0152949. PubMed ID: 27043825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ANuPP: A Versatile Tool to Predict Aggregation Nucleating Regions in Peptides and Proteins.
    Prabakaran R; Rawat P; Kumar S; Michael Gromiha M
    J Mol Biol; 2021 May; 433(11):166707. PubMed ID: 33972019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoimmune Responses to Soluble Aggregates of Amyloidogenic Proteins Involved in Neurodegenerative Diseases: Overlapping Aggregation Prone and Autoimmunogenic regions.
    Kumar S; Thangakani AM; Nagarajan R; Singh SK; Velmurugan D; Gromiha MM
    Sci Rep; 2016 Feb; 6():22258. PubMed ID: 26924748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of properties important to protein aggregation using feature selection.
    Fang Y; Gao S; Tai D; Middaugh CR; Fang J
    BMC Bioinformatics; 2013 Oct; 14():314. PubMed ID: 24165390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the sequence features determining amyloidosis in human antibody light chains.
    Rawat P; Prabakaran R; Kumar S; Gromiha MM
    Sci Rep; 2021 Jul; 11(1):13785. PubMed ID: 34215782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AbsoluRATE: An in-silico method to predict the aggregation kinetics of native proteins.
    Rawat P; Prabakaran R; Kumar S; Gromiha MM
    Biochim Biophys Acta Proteins Proteom; 2021 Sep; 1869(9):140682. PubMed ID: 34102324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A consensus method for the prediction of 'aggregation-prone' peptides in globular proteins.
    Tsolis AC; Papandreou NC; Iconomidou VA; Hamodrakas SJ
    PLoS One; 2013; 8(1):e54175. PubMed ID: 23326595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudopeptide Amyloid Aggregation Inhibitors: In Silico, Single Molecule and Cell Viability Studies.
    Robinson M; Lou J; Mehrazma B; Rauk A; Beazely M; Leonenko Z
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33494369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting heterogeneous features to improve in silico prediction of peptide status - amyloidogenic or non-amyloidogenic.
    Nair SS; Subba Reddy NV; Hareesha KS
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S21. PubMed ID: 22373069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease.
    Lucato CM; Lupton CJ; Halls ML; Ellisdon AM
    J Mol Biol; 2017 May; 429(9):1289-1304. PubMed ID: 28342736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein aggregation.
    Khalili K; Farzam F; Dabirmanesh B; Khajeh K
    Prog Mol Biol Transl Sci; 2024; 206():229-263. PubMed ID: 38811082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MILAMP: Multiple Instance Prediction of Amyloid Proteins.
    Munir F; Gul S; Asif A; Minhas FA
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):1142-1150. PubMed ID: 31443048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence.
    Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2010 Feb; 26(3):326-32. PubMed ID: 20019059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation prone regions in human proteome: Insights from large-scale data analyses.
    Prabakaran R; Goel D; Kumar S; Gromiha MM
    Proteins; 2017 Jun; 85(6):1099-1118. PubMed ID: 28257595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.
    Castillo V; GraƱa-Montes R; Sabate R; Ventura S
    Biotechnol J; 2011 Jun; 6(6):674-85. PubMed ID: 21538897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based prediction of protein-peptide specificity in Rosetta.
    King CA; Bradley P
    Proteins; 2010 Dec; 78(16):3437-49. PubMed ID: 20954182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced aggregation and cytotoxicity of amyloid peptides by graphene oxide/gold nanocomposites prepared by pulsed laser ablation in water.
    Li J; Han Q; Wang X; Yu N; Yang L; Yang R; Wang C
    Small; 2014 Nov; 10(21):4386-94. PubMed ID: 25059878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep-learning framework for multi-level peptide-protein interaction prediction.
    Lei Y; Li S; Liu Z; Wan F; Tian T; Li S; Zhao D; Zeng J
    Nat Commun; 2021 Sep; 12(1):5465. PubMed ID: 34526500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.