BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34181119)

  • 1. Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures.
    Yarach U; Saekho S; Setsompop K; Suwannasak A; Boonsuth R; Wantanajittikul K; Angkurawaranon S; Angkurawaranon C; Sangpin P
    MAGMA; 2021 Dec; 34(6):915-927. PubMed ID: 34181119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Brain 3D T1-Weighted Turbo Field Echo MRI Using Compressed Sensing-Sensitivity Encoding (CS-SENSE).
    Duan Y; Zhang J; Zhuo Z; Ding J; Ju R; Wang J; Ma T; Haller S; Liu Y; Liu Y
    Eur J Radiol; 2020 Oct; 131():109255. PubMed ID: 32920218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined signal averaging and compressed sensing: impact on quality of contrast-enhanced fat-suppressed 3D turbo field-echo imaging for pharyngolaryngeal squamous cell carcinoma.
    Takumi K; Nagano H; Nakanosono R; Kumagae Y; Fukukura Y; Yoshiura T
    Neuroradiology; 2020 Oct; 62(10):1293-1299. PubMed ID: 32577772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique.
    Cho SJ; Choi YJ; Chung SR; Lee JH; Baek JH
    Clin Radiol; 2019 Oct; 74(10):817.e9-817.e14. PubMed ID: 31362886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiral 3-Dimensional T1-Weighted Turbo Field Echo: Increased Speed for Magnetization-Prepared Gradient Echo Brain Magnetic Resonance Imaging.
    Sartoretti T; Sartoretti E; van Smoorenburg L; Schwenk Á; Mannil M; Graf N; Binkert CA; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 Dec; 55(12):775-784. PubMed ID: 32816415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating prostate cancer bone metastasis using accelerated whole-body isotropic 3D T1-weighted Dixon MRI with compressed SENSE: a feasibility study.
    Liao Z; Liu G; Ming B; Ma C; Fan X; Zhang X; Peng W; Liu C
    Eur Radiol; 2023 Mar; 33(3):1719-1728. PubMed ID: 36269371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid of Compressed Sensing and Parallel Imaging Applied to Three-dimensional Isotropic T
    Morita K; Nakaura T; Maruyama N; Iyama Y; Oda S; Utsunomiya D; Namimoto T; Kitajima M; Yoneyama M; Yamashita Y
    Magn Reson Med Sci; 2020 Feb; 19(1):48-55. PubMed ID: 30880300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressed Sensing-Sensitivity Encoding (CS-SENSE) Accelerated Brain Imaging: Reduced Scan Time without Reduced Image Quality.
    Vranic JE; Cross NM; Wang Y; Hippe DS; de Weerdt E; Mossa-Basha M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):92-98. PubMed ID: 30523142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Acceleration Three-Dimensional T1-Weighted Dual Echo Dixon Hepatobiliary Phase Imaging Using Compressed Sensing-Sensitivity Encoding: Comparison of Image Quality and Solid Lesion Detectability with the Standard T1-Weighted Sequence.
    Nam JG; Lee JM; Lee SM; Kang HJ; Lee ES; Hur BY; Yoon JH; Kim E; Doneva M
    Korean J Radiol; 2019 Mar; 20(3):438-448. PubMed ID: 30799575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing.
    Gersing AS; Bodden J; Neumann J; Diefenbach MN; Kronthaler S; Pfeiffer D; Knebel C; Baum T; Schwaiger BJ; Hock A; Rummeny EJ; Woertler K; Karampinos DC
    Eur J Radiol; 2019 Sep; 118():277-284. PubMed ID: 31301872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hybrid of compressed sensing and parallel imaging on the quantitative values measured by 3D quantitative synthetic MRI: A phantom study.
    Murata S; Hagiwara A; Fujita S; Haruyama T; Kato S; Andica C; Kamagata K; Goto M; Hori M; Yoneyama M; Hamasaki N; Hoshito H; Aoki S
    Magn Reson Imaging; 2021 May; 78():90-97. PubMed ID: 33444595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence.
    Park CJ; Cha J; Ahn SS; Choi HS; Kim YD; Nam HS; Heo JH; Lee SK
    Korean J Radiol; 2020 Dec; 21(12):1334-1344. PubMed ID: 32767865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of MRI acquisition acceleration via compressed sensing and parallel imaging on brain volumetry.
    Dieckmeyer M; Roy AG; Senapati J; Wachinger C; Grundl L; Döpfert J; Bertran PF; Lemke A; Zimmer C; Kirschke JS; Hedderich DM
    MAGMA; 2021 Aug; 34(4):487-497. PubMed ID: 33502667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated MRI of the Lumbar Spine Using Compressed Sensing: Quality and Efficiency.
    Bratke G; Rau R; Weiss K; Kabbasch C; Sircar K; Morelli JN; Persigehl T; Maintz D; Giese D; Haneder S
    J Magn Reson Imaging; 2019 Jun; 49(7):e164-e175. PubMed ID: 30267462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of Artificial Intelligence Constrained Compressed SENSE Accelerated 3D Isotropic T1 VISTA Sequence For Vessel Wall MR Imaging: Exploring the Potential of Higher Acceleration Factors Compared to Traditional Compressed SENSE.
    Ma Y; Wang M; Qiao Y; Wen Y; Zhu Y; Jiang K; Lian J; Tong D
    Acad Radiol; 2024 Apr; ():. PubMed ID: 38664146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressed SENSE accelerated 3D T1w black blood turbo spin echo versus 2D T1w turbo spin echo sequence in pituitary magnetic resonance imaging.
    Sartoretti T; Sartoretti E; Wyss M; Schwenk Á; van Smoorenburg L; Eichenberger B; Najafi A; Binkert C; Becker AS; Sartoretti-Schefer S
    Eur J Radiol; 2019 Nov; 120():108667. PubMed ID: 31550639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of compressed sensing-sensitivity encoding (CS-SENSE) accelerated 3D T2W TSE sequence versus conventional 3D and 2D T2W TSE sequences in rectal cancer: a prospective study.
    Gong X; Wen D; Wei H; Shen Y; Deng Y; Wang Y; Wei M; Zhang X; Zhang X; Wang Z; Wu B
    Abdom Radiol (NY); 2022 Nov; 47(11):3660-3670. PubMed ID: 35997800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: Scan-rescan repeatability and comparison with conventional T
    Fujita S; Hagiwara A; Hori M; Warntjes M; Kamagata K; Fukunaga I; Goto M; Takuya H; Takasu K; Andica C; Maekawa T; Takemura MY; Irie R; Wada A; Suzuki M; Aoki S
    J Magn Reson Imaging; 2019 Dec; 50(6):1834-1842. PubMed ID: 30968991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Resolution Magnetic Resonance Imaging Using Compressed Sensing for Intracranial and Extracranial Arteries: Comparison with Conventional Parallel Imaging.
    Suh CH; Jung SC; Lee HB; Cho SJ
    Korean J Radiol; 2019 Mar; 20(3):487-497. PubMed ID: 30799580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the Impact of Turbo Factor on Image Quality and Tissue Volumetrics in Brain Magnetic Resonance Imaging Using the Three-Dimensional T1-Weighted (3D T1W) Sequence.
    Manson EN; Inkoom S; Mumuni AN; Shirazu I; Awua AK
    Int J Biomed Imaging; 2023; 2023():6304219. PubMed ID: 38025965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.