These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
816 related articles for article (PubMed ID: 34181185)
1. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Li XG; Chen MX; Zhao SQ; Wang XQ Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185 [TBL] [Abstract][Full Text] [Related]
2. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling. Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168 [TBL] [Abstract][Full Text] [Related]
3. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip. Wang L; Wu J; Chen J; Dou W; Zhao Q; Han J; Liu J; Su W; Li A; Liu P; An Z; Xu C; Sun Y Talanta; 2021 May; 226():122097. PubMed ID: 33676654 [TBL] [Abstract][Full Text] [Related]
4. Advances of microfluidic intestine-on-a-chip for analyzing anti-inflammation of food. Liang D; Su W; Tan M Crit Rev Food Sci Nutr; 2022; 62(16):4418-4434. PubMed ID: 33480263 [TBL] [Abstract][Full Text] [Related]
5. Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip. Shin W; Kim HJ Methods Cell Biol; 2018; 146():135-148. PubMed ID: 30037458 [TBL] [Abstract][Full Text] [Related]
6. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Kasendra M; Tovaglieri A; Sontheimer-Phelps A; Jalili-Firoozinezhad S; Bein A; Chalkiadaki A; Scholl W; Zhang C; Rickner H; Richmond CA; Li H; Breault DT; Ingber DE Sci Rep; 2018 Feb; 8(1):2871. PubMed ID: 29440725 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic Organ-on-a-Chip Models of Human Intestine. Bein A; Shin W; Jalili-Firoozinezhad S; Park MH; Sontheimer-Phelps A; Tovaglieri A; Chalkiadaki A; Kim HJ; Ingber DE Cell Mol Gastroenterol Hepatol; 2018; 5(4):659-668. PubMed ID: 29713674 [TBL] [Abstract][Full Text] [Related]
8. Establishment of a Modular Anaerobic Human Intestine Chip. Jalili-Firoozinezhad S; Bein A; Gazzaniga FS; Fadel CW; Novak R; Ingber DE Methods Mol Biol; 2022; 2373():69-85. PubMed ID: 34520007 [TBL] [Abstract][Full Text] [Related]
9. [Advances of gut-on-a-chip for exploring host-microbe interactions]. Li X; Shi P; Zhang L; Wang H; You X; Zhao G Sheng Wu Gong Cheng Xue Bao; 2024 Sep; 40(9):2916-2933. PubMed ID: 39319715 [TBL] [Abstract][Full Text] [Related]
10. Microengineered Organ-on-a-chip Platforms towards Personalized Medicine. Kankala RK; Wang SB; Chen AZ Curr Pharm Des; 2018; 24(45):5354-5366. PubMed ID: 30799783 [TBL] [Abstract][Full Text] [Related]
11. Combining Human Organoids and Organ-on-a-Chip Technology to Model Intestinal Region-Specific Functionality. Kulkarni G; Apostolou A; Ewart L; Lucchesi C; Kasendra M J Vis Exp; 2022 May; (183):. PubMed ID: 35604153 [TBL] [Abstract][Full Text] [Related]
12. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems. Kang TH; Kim HJ Micromachines (Basel); 2016 Jun; 7(7):. PubMed ID: 30404281 [TBL] [Abstract][Full Text] [Related]
13. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips. Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional microengineered vascularised endometrium-on-a-chip. Ahn J; Yoon MJ; Hong SH; Cha H; Lee D; Koo HS; Ko JE; Lee J; Oh S; Jeon NL; Kang YJ Hum Reprod; 2021 Sep; 36(10):2720-2731. PubMed ID: 34363466 [TBL] [Abstract][Full Text] [Related]
15. Gut-on-a-chip: Mimicking and monitoring the human intestine. Marrero D; Pujol-Vila F; Vera D; Gabriel G; Illa X; Elizalde-Torrent A; Alvarez M; Villa R Biosens Bioelectron; 2021 Jun; 181():113156. PubMed ID: 33761417 [TBL] [Abstract][Full Text] [Related]
16. Intestinal organ chips for disease modelling and personalized medicine. Özkan A; LoGrande NT; Feitor JF; Goyal G; Ingber DE Nat Rev Gastroenterol Hepatol; 2024 Nov; 21(11):751-773. PubMed ID: 39192055 [TBL] [Abstract][Full Text] [Related]
17. Establishment of physiologically relevant oxygen gradients in microfluidic organ chips. Grant J; Lee E; Almeida M; Kim S; LoGrande N; Goyal G; Sesay AM; Breault DT; Prantil-Baun R; Ingber DE Lab Chip; 2022 Apr; 22(8):1584-1593. PubMed ID: 35274118 [No Abstract] [Full Text] [Related]
18. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Moerkens R; Mooiweer J; Ramírez-Sánchez AD; Oelen R; Franke L; Wijmenga C; Barrett RJ; Jonkers IH; Withoff S Cell Rep; 2024 Jul; 43(7):114247. PubMed ID: 38907996 [TBL] [Abstract][Full Text] [Related]
19. Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models. Lee SH; Choi N; Sung JH Expert Opin Drug Metab Toxicol; 2019 Dec; 15(12):1005-1019. PubMed ID: 31794278 [No Abstract] [Full Text] [Related]
20. Modeling the Human Body on Microfluidic Chips. Jalili-Firoozinezhad S; Miranda CC; Cabral JMS Trends Biotechnol; 2021 Aug; 39(8):838-852. PubMed ID: 33581889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]