These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 34181387)
1. Effects of Applied Interfacial Pressure on Li-Metal Cycling Performance and Morphology in 4 M LiFSI in DME. Harrison KL; Goriparti S; Merrill LC; Long DM; Warren B; Roberts SA; Perdue BR; Casias Z; Cuillier P; Boyce BL; Jungjohann KL ACS Appl Mater Interfaces; 2021 Jul; 13(27):31668-31679. PubMed ID: 34181387 [TBL] [Abstract][Full Text] [Related]
2. LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. Liu S; Zhang Q; Wang X; Xu M; Li W; Lucht BL ACS Appl Mater Interfaces; 2020 Jul; 12(30):33719-33728. PubMed ID: 32608965 [TBL] [Abstract][Full Text] [Related]
3. Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. Maeyoshi Y; Ding D; Kubota M; Ueda H; Abe K; Kanamura K; Abe H ACS Appl Mater Interfaces; 2019 Jul; 11(29):25833-25843. PubMed ID: 31245988 [TBL] [Abstract][Full Text] [Related]
4. Design of a LiF-Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI-THF Electrolyte for Stable Lithium Metal Batteries. Pham TD; Bin Faheem A; Lee KK Small; 2021 Nov; 17(46):e2103375. PubMed ID: 34636172 [TBL] [Abstract][Full Text] [Related]
5. Properties of Thin Lithium Metal Electrodes in Carbonate Electrolytes with Realistic Parameters. Zhang J; Shi J; Wen X; Zhao Y; Guo J ACS Appl Mater Interfaces; 2020 Jul; 12(29):32863-32870. PubMed ID: 32584024 [TBL] [Abstract][Full Text] [Related]
6. Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Chen Y; Yu Z; Rudnicki P; Gong H; Huang Z; Kim SC; Lai JC; Kong X; Qin J; Cui Y; Bao Z J Am Chem Soc; 2021 Nov; 143(44):18703-18713. PubMed ID: 34709034 [TBL] [Abstract][Full Text] [Related]
7. Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes. Cui Y; Liu S; Liu B; Wang D; Zhong Y; Zhang X; Wang X; Xia X; Gu C; Tu J Front Chem; 2019; 7():952. PubMed ID: 32039160 [TBL] [Abstract][Full Text] [Related]
8. High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Liu S; Ji X; Yue J; Hou S; Wang P; Cui C; Chen J; Shao B; Li J; Han F; Tu J; Wang C J Am Chem Soc; 2020 Feb; 142(5):2438-2447. PubMed ID: 31927894 [TBL] [Abstract][Full Text] [Related]
9. Designing and Demystifying the Lithium Metal Interface toward Highly Reversible Batteries. Xu R; Ding JF; Ma XX; Yan C; Yao YX; Huang JQ Adv Mater; 2021 Dec; 33(52):e2105962. PubMed ID: 34610186 [TBL] [Abstract][Full Text] [Related]
10. Improvement of Lithium-Sulfur Battery Performance by Porous Carbon Selection and LiFSI/DME Electrolyte Optimization. Yoshida L; Matsui Y; Deguchi M; Hakari T; Watanabe M; Ishikawa M ACS Appl Mater Interfaces; 2023 Aug; 15(31):37467-37476. PubMed ID: 37494603 [TBL] [Abstract][Full Text] [Related]
12. Dual-Solvent Li-Ion Solvation Enables High-Performance Li-Metal Batteries. Wang H; Yu Z; Kong X; Huang W; Zhang Z; Mackanic DG; Huang X; Qin J; Bao Z; Cui Y Adv Mater; 2021 Jun; 33(25):e2008619. PubMed ID: 33969571 [TBL] [Abstract][Full Text] [Related]
13. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. Wan C; Xu S; Hu MY; Cao R; Qian J; Qin Z; Liu J; Mueller KT; Zhang JG; Hu JZ ACS Appl Mater Interfaces; 2017 May; 9(17):14741-14748. PubMed ID: 28375601 [TBL] [Abstract][Full Text] [Related]
14. Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO Pham HQ; Chung GJ; Han J; Hwang EH; Kwon YG; Song SW J Chem Phys; 2020 Mar; 152(9):094709. PubMed ID: 33480738 [TBL] [Abstract][Full Text] [Related]
15. Lithium Self-Discharge and Its Prevention: Direct Visualization through In Situ Electrochemical Scanning Transmission Electron Microscopy. Harrison KL; Zavadil KR; Hahn NT; Meng X; Elam JW; Leenheer A; Zhang JG; Jungjohann KL ACS Nano; 2017 Nov; 11(11):11194-11205. PubMed ID: 29112807 [TBL] [Abstract][Full Text] [Related]
16. Delocalized Lithium Ion Flux by Solid-State Electrolyte Composites Coupled with 3D Porous Nanostructures for Highly Stable Lithium Metal Batteries. Lee J; Park H; Hwang J; Noh J; Yu C ACS Nano; 2023 Aug; 17(16):16020-16035. PubMed ID: 37515594 [TBL] [Abstract][Full Text] [Related]
17. Concentrated LiODFB Electrolyte for Lithium Metal Batteries. Yu J; Gao N; Peng J; Ma N; Liu X; Shen C; Xie K; Fang Z Front Chem; 2019; 7():494. PubMed ID: 31380343 [TBL] [Abstract][Full Text] [Related]
18. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Suo L; Xue W; Gobet M; Greenbaum SG; Wang C; Chen Y; Yang W; Li Y; Li J Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1156-1161. PubMed ID: 29351993 [TBL] [Abstract][Full Text] [Related]
19. Complementary Electrolyte Design for Li Metal Batteries in Electric Vehicle Applications. He M; Su CC; Xu F; Amine K; Cai M ACS Appl Mater Interfaces; 2021 Jun; 13(22):25879-25889. PubMed ID: 34028245 [TBL] [Abstract][Full Text] [Related]
20. Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. Wang W; Zhang J; Yang Q; Wang S; Wang W; Li B ACS Appl Mater Interfaces; 2020 May; 12(20):22901-22909. PubMed ID: 32348668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]