BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34181400)

  • 1. Quantification and Characterization of Ti-, Ce-, and Ag-Nanoparticles in Global Surface Waters and Precipitation.
    Azimzada A; Jreije I; Hadioui M; Shaw P; Farner JM; Wilkinson KJ
    Environ Sci Technol; 2021 Jul; 55(14):9836-9844. PubMed ID: 34181400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of Cerium-, Titanium-, and Silver-Bearing Nanoparticles in the Besòs and Ebro Rivers.
    Sanchís J; Jiménez-Lamana J; Abad E; Szpunar J; Farré M
    Environ Sci Technol; 2020 Apr; 54(7):3969-3978. PubMed ID: 32191837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay.
    Li G; Liu X; Wang H; Liang S; Xia B; Sun K; Li X; Dai Y; Yue T; Zhao J; Wang Z; Xing B
    Water Res; 2023 Aug; 242():120242. PubMed ID: 37390658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wastewater-Aged Silver Nanoparticles in Single and Combined Exposures with Titanium Dioxide Affect the Early Development of the Marine Copepod
    Georgantzopoulou A; Farkas J; Ndungu K; Coutris C; Carvalho PA; Booth AM; Macken A
    Environ Sci Technol; 2020 Oct; 54(19):12316-12325. PubMed ID: 32852942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.
    Heinlaan M; Muna M; Knöbel M; Kistler D; Odzak N; Kühnel D; Müller J; Gupta GS; Kumar A; Shanker R; Sigg L
    Environ Pollut; 2016 Sep; 216():689-699. PubMed ID: 27357482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.
    Grün AY; Meier J; Metreveli G; Schaumann GE; Manz W
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24277-24288. PubMed ID: 27650851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and size distribution of silver nanoparticles in wastewater effluents from various treatment processes in Canada.
    Gagnon C; Turcotte P; Gagné F; Smyth SA
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65952-65959. PubMed ID: 34327645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea.
    Radniecki TS; Stankus DP; Neigh A; Nason JA; Semprini L
    Chemosphere; 2011 Sep; 85(1):43-9. PubMed ID: 21757219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.
    Yang X; Gondikas AP; Marinakos SM; Auffan M; Liu J; Hsu-Kim H; Meyer JN
    Environ Sci Technol; 2012 Jan; 46(2):1119-27. PubMed ID: 22148238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: Structure, composition and antibacterial assay.
    Chernozem RV; Surmeneva MA; Krause B; Baumbach T; Ignatov VP; Prymak O; Loza K; Epple M; Ennen-Roth F; Wittmar A; Ulbricht M; Chudinova EA; Rijavec T; Lapanje A; Surmenev RA
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():420-430. PubMed ID: 30678928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.
    Donovan AR; Adams CD; Ma Y; Stephan C; Eichholz T; Shi H
    Chemosphere; 2016 Feb; 144():148-53. PubMed ID: 26347937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to silver and titanium dioxide nanoparticles at supra-environmental concentrations decreased sperm motility and affected spermatozoa subpopulations in gilthead seabream, Sparus aurata.
    Oliveira CCV; Ferrão L; Gallego V; Mieiro C; Oliveira IB; Carvalhais A; Pachedo M; Cabrita E
    Fish Physiol Biochem; 2023 Jul; ():. PubMed ID: 37436567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow and fate of silver nanoparticles in small French catchments under different land-uses: The first one-year study.
    Wang JL; Alasonati E; Tharaud M; Gelabert A; Fisicaro P; Benedetti MF
    Water Res; 2020 Jun; 176():115722. PubMed ID: 32247257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake.
    Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO
    Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying temporal and geographic variation in sunscreen and mineralogic titanium-containing nanoparticles in three recreational rivers.
    Rand LN; Bi Y; Poustie A; Bednar AJ; Hanigan DJ; Westerhoff P; Ranville JF
    Sci Total Environ; 2020 Nov; 743():140845. PubMed ID: 32758854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system.
    Bowman CR; Bailey FC; Elrod-Erickson M; Neigh AM; Otter RR
    Environ Toxicol Chem; 2012 Aug; 31(8):1793-800. PubMed ID: 22573570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.