These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34181433)

  • 1. Defect-Free Axially Stacked GaAs/GaAsP Nanowire Quantum Dots with Strong Carrier Confinement.
    Zhang Y; Velichko AV; Fonseka HA; Parkinson P; Gott JA; Davis G; Aagesen M; Sanchez AM; Mowbray D; Liu H
    Nano Lett; 2021 Jul; 21(13):5722-5729. PubMed ID: 34181433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect-Free Self-Catalyzed GaAs/GaAsP Nanowire Quantum Dots Grown on Silicon Substrate.
    Wu J; Ramsay A; Sanchez A; Zhang Y; Kim D; Brossard F; Hu X; Benamara M; Ware ME; Mazur YI; Salamo GJ; Aagesen M; Wang Z; Liu H
    Nano Lett; 2016 Jan; 16(1):504-11. PubMed ID: 26666697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Nanowire-Quantum Dots on Si Substrates.
    Boras G; Yu X; Fonseka HA; Davis G; Velichko AV; Gott JA; Zeng H; Wu S; Parkinson P; Xu X; Mowbray D; Sanchez AM; Liu H
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(26):14338-14347. PubMed ID: 34276869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Strained III-V-V Coaxial Nanowire Quantum Wells with Strong Carrier Confinement.
    Zhang Y; Davis G; Fonseka HA; Velichko A; Gustafsson A; Godde T; Saxena D; Aagesen M; Parkinson PW; Gott JA; Huo S; Sanchez AM; Mowbray DJ; Liu H
    ACS Nano; 2019 May; 13(5):5931-5938. PubMed ID: 31067033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires.
    Loitsch B; Winnerl J; Grimaldi G; Wierzbowski J; Rudolph D; Morkötter S; Döblinger M; Abstreiter G; Koblmüller G; Finley JJ
    Nano Lett; 2015 Nov; 15(11):7544-51. PubMed ID: 26455732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial growth of crystal phase quantum dots in III-V semiconductor nanowires.
    Lozano MS; Gómez VJ
    Nanoscale Adv; 2023 Mar; 5(7):1890-1909. PubMed ID: 36998660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GaAs quantum dots in a GaP nanowire photodetector.
    Kuyanov P; McNamee SA; LaPierre RR
    Nanotechnology; 2018 Mar; 29(12):124003. PubMed ID: 29350630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of InAs quantum dots on GaAs nanowires by metal organic chemical vapor deposition.
    Yan X; Zhang X; Ren X; Huang H; Guo J; Guo X; Liu M; Wang Q; Cai S; Huang Y
    Nano Lett; 2011 Sep; 11(9):3941-5. PubMed ID: 21848312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally-driven formation method for growing (quantum) dots on sidewalls of self-catalysed thin nanowires.
    Zhang Y; Fonseka HA; Yang H; Yu X; Jurczak P; Huo S; Sanchez AM; Liu H
    Nanoscale Horiz; 2022 Feb; 7(3):311-318. PubMed ID: 35119067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy.
    Zhang Y; Aagesen M; Holm JV; Jørgensen HI; Wu J; Liu H
    Nano Lett; 2013 Aug; 13(8):3897-902. PubMed ID: 23899047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation mechanism and optical properties of InAs quantum dots on the surface of GaAs nanowires.
    Yan X; Zhang X; Ren X; Lv X; Li J; Wang Q; Cai S; Huang Y
    Nano Lett; 2012 Apr; 12(4):1851-6. PubMed ID: 22439825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Formed Quantum Wires and Dots in GaAsP-GaAsP Core-Shell Nanowires.
    Fonseka HA; Velichko AV; Zhang Y; Gott JA; Davis GD; Beanland R; Liu H; Mowbray DJ; Sanchez AM
    Nano Lett; 2019 Jun; 19(6):4158-4165. PubMed ID: 31141668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a GaAsP shell on the optical properties of self-catalyzed GaAs nanowires grown on silicon.
    Couto OD; Sercombe D; Puebla J; Otubo L; Luxmoore IJ; Sich M; Elliott TJ; Chekhovich EA; Wilson LR; Skolnick MS; Liu HY; Tartakovskii AI
    Nano Lett; 2012 Oct; 12(10):5269-74. PubMed ID: 22989367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission.
    Yu P; Li Z; Wu T; Wang YT; Tong X; Li CF; Wang Z; Wei SH; Zhang Y; Liu H; Fu L; Zhang Y; Wu J; Tan HH; Jagadish C; Wang ZM
    ACS Nano; 2019 Nov; 13(11):13492-13500. PubMed ID: 31689076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure.
    Chen S; Jansson M; Stehr JE; Huang Y; Ishikawa F; Chen WM; Buyanova IA
    Nano Lett; 2017 Mar; 17(3):1775-1781. PubMed ID: 28170267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Controlled Single-Photon Emitters Fabricated by Near-Field Illumination.
    Biccari F; Boschetti A; Pettinari G; La China F; Gurioli M; Intonti F; Vinattieri A; Sharma M; Capizzi M; Gerardino A; Businaro L; Hopkinson M; Polimeni A; Felici M
    Adv Mater; 2018 May; 30(21):e1705450. PubMed ID: 29611235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biexciton Binding Energy and Line width of Single Quantum Dots at Room Temperature.
    Vonk SJW; Heemskerk BAJ; Keitel RC; Hinterding SOM; Geuchies JJ; Houtepen AJ; Rabouw FT
    Nano Lett; 2021 Jul; 21(13):5760-5766. PubMed ID: 34133188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the 3-Fold Symmetric Shape of Group III-Nitride Quantum Dots: Suppression of Fine-Structure Splitting.
    Yeo HS; Lee K; Cho JH; Park SH; Cho YH
    Nano Lett; 2020 Dec; 20(12):8461-8468. PubMed ID: 32910661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dot-Size Dependent Excitons in Droplet-Etched Cone-Shell GaAs Quantum Dots.
    Heyn C; Gräfenstein A; Pirard G; Ranasinghe L; Deneke K; Alshaikh A; Bester G; Hansen W
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of exciton behavior in type-II self-assembled GaSb/GaAs quantum dots.
    Qiu F; Qiu W; Li Y; Wang X; Zhang Y; Zhou X; Lv Y; Sun Y; Deng H; Hu S; Dai N; Wang C; Yang Y; Zhuang Q; Hayne M; Krier A
    Nanotechnology; 2016 Feb; 27(6):065602. PubMed ID: 26684716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.