These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34181584)

  • 1. Parametric study for optimal performance of Coulomb-coupled quantum dots.
    Jong KH; Ri SM; Ri CW
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cotunneling current through a two-level quantum dot coupled to magnetic leads: the role of exchange interaction.
    Sharafutdinov AU; Burmistrov IS
    J Phys Condens Matter; 2012 Apr; 24(15):155301. PubMed ID: 22436594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realistic nonlocal refrigeration engine based on Coulomb-coupled systems.
    Barman A; Halder S; Varshney SK; Dutta G; Singha A
    Phys Rev E; 2021 Jan; 103(1-1):012131. PubMed ID: 33601520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron cotunneling through doubly occupied quantum dots: effect of spin configuration.
    Lan J; Sheng W
    Nanoscale Res Lett; 2011 Mar; 6(1):251. PubMed ID: 21711763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
    Kaasbjerg K; Jauho AP
    Phys Rev Lett; 2016 May; 116(19):196801. PubMed ID: 27232031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-terminal quantum-dot refrigerators.
    Zhang Y; Lin G; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052118. PubMed ID: 26066130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotunneling current and shot noise in quantum dots.
    Thielmann A; Hettler MH; König J; Schön G
    Phys Rev Lett; 2005 Sep; 95(14):146806. PubMed ID: 16241685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotunneling-mediated transport through excited states in the Coulomb-blockade regime.
    Schleser R; Ihn T; Ruh E; Ensslin K; Tews M; Pfannkuche D; Driscoll DC; Gossard AC
    Phys Rev Lett; 2005 May; 94(20):206805. PubMed ID: 16090270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of transmission functions for an optimized three-terminal quantum dot heat engine.
    Schiegg CH; Dzierzawa M; Eckern U
    J Phys Condens Matter; 2017 Mar; 29(8):085303. PubMed ID: 28095371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
    Keller AJ; Lim JS; Sánchez D; López R; Amasha S; Katine JA; Shtrikman H; Goldhaber-Gordon D
    Phys Rev Lett; 2016 Aug; 117(6):066602. PubMed ID: 27541473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-equilibrium thermoelectric transport across normal metal-quantum dot-superconductor hybrid system within the Coulomb blockade regime.
    Verma S; Singh A
    J Phys Condens Matter; 2022 Feb; 34(15):. PubMed ID: 35045407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size dependence in tunneling spectra of PbSe quantum-dot arrays.
    Ou YC; Cheng SF; Jian WB
    Nanotechnology; 2009 Jul; 20(28):285401. PubMed ID: 19546498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Many-body tunneling and nonequilibrium dynamics in double quantum dots with capacitive coupling.
    Hou W; Wang Y; Zhao W; Zhu Z; Wei J; Luo H; Yan Y
    J Phys Condens Matter; 2020 Feb; 33(7):075301. PubMed ID: 33120379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple cotunneling in large quantum dot arrays.
    Tran TB; Beloborodov IS; Lin XM; Bigioni TP; Vinokur VM; Jaeger HM
    Phys Rev Lett; 2005 Aug; 95(7):076806. PubMed ID: 16196814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid microwave-cavity heat engine.
    Bergenfeldt C; Samuelsson P; Sothmann B; Flindt C; Büttiker M
    Phys Rev Lett; 2014 Feb; 112(7):076803. PubMed ID: 24579624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two coupled double quantum-dot systems as a working substance for heat machines.
    de Oliveira JLD; Rojas M; Filgueiras C
    Phys Rev E; 2021 Jul; 104(1-1):014149. PubMed ID: 34412368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations.
    Dong B; Ding GH; Lei XL
    J Phys Condens Matter; 2015 May; 27(20):205303. PubMed ID: 25950191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Violation of the Wiedemann-Franz law in a single-electron transistor.
    Kubala B; König J; Pekola J
    Phys Rev Lett; 2008 Feb; 100(6):066801. PubMed ID: 18352503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable noise cross correlations in a double quantum dot.
    McClure DT; Dicarlo L; Zhang Y; Engel HA; Marcus CM; Hanson MP; Gossard AC
    Phys Rev Lett; 2007 Feb; 98(5):056801. PubMed ID: 17358883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads.
    Weymann I
    J Phys Condens Matter; 2010 Jan; 22(1):015301. PubMed ID: 21386221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.