These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34181585)

  • 1. Universal adversarial perturbations for CNN classifiers in EEG-based BCIs.
    Liu Z; Meng L; Zhang X; Fang W; Wu D
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34181585
    [No Abstract]   [Full Text] [Related]  

  • 2. On the Vulnerability of CNN Classifiers in EEG-Based BCIs.
    Zhang X; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):814-825. PubMed ID: 30951472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment-Based Adversarial Training (ABAT) for Improving the Robustness and Accuracy of EEG-Based BCIs.
    Chen X; Wang Z; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1703-1714. PubMed ID: 38648154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the performance of multisubject motor imagery-based BCIs using twin cascaded softmax CNNs.
    Luo J; Shi W; Lu N; Wang J; Chen H; Wang Y; Lu X; Wang X; Hei X
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33540387
    [No Abstract]   [Full Text] [Related]  

  • 5. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Ensemble CNN for Subject-Independent Classification of Motor Imagery-based EEG.
    Dolzhikova I; Abibullaev B; Sameni R; Zollanvari A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():319-324. PubMed ID: 34891300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-Based Brain-Computer Interfaces are Vulnerable to Backdoor Attacks.
    Meng L; Jiang X; Huang J; Zeng Z; Yu S; Jung TP; Lin CT; Chavarriaga R; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2224-2234. PubMed ID: 37145943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update.
    Lotte F; Bougrain L; Cichocki A; Clerc M; Congedo M; Rakotomamonjy A; Yger F
    J Neural Eng; 2018 Jun; 15(3):031005. PubMed ID: 29488902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 10. A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs.
    De Venuto D; Mezzina G
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34201381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Domain Convolutional Neural Networks for Lower-Limb Motor Imagery Using Dry vs. Wet Electrodes.
    Jeong JH; Choi JH; Kim KT; Lee SJ; Kim DJ; Kim HM
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Perturbation Network for Universal Adversarial Attacks on Brain-Computer Interfaces.
    Jung J; Moon H; Yu G; Hwang H
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5622-5633. PubMed ID: 37556336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Invariant Patterns Based on a Convolutional Neural Network and Big Electroencephalography Data for Subject-Independent P300 Brain-Computer Interfaces.
    Gao W; Yu T; Yu JG; Gu Z; Li K; Huang Y; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1047-1057. PubMed ID: 34033543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces.
    Santamaria-Vazquez E; Martinez-Cagigal V; Vaquerizo-Villar F; Hornero R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2773-2782. PubMed ID: 33378260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eliminating or Shortening the Calibration for a P300 Brain-Computer Interface Based on a Convolutional Neural Network and Big Electroencephalography Data: An Online Study.
    Gao W; Huang W; Li M; Gu Z; Pan J; Yu T; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1754-1763. PubMed ID: 37030734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic Graphic Shape Decoding for EEG-based Brain-Computer Interfaces.
    Qiao J; Tang J; Yang J; Xu M; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():812-815. PubMed ID: 34891414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Evaluation of Compressed Deep CNN for Motor Imagery Classification using EEG.
    R V; Robinson N; Reddy M R; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():795-799. PubMed ID: 34891410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency Domain Channel-Wise Attack to CNN Classifiers in Motor Imagery Brain-Computer Interfaces.
    Huang X; Choi KS; Liang S; Zhang Y; Zhang Y; Poon S; Pedrycz W
    IEEE Trans Biomed Eng; 2024 May; 71(5):1587-1598. PubMed ID: 38113159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting the universal adversarial perturbations on high-density sEMG signals.
    Xue B; Wu L; Liu A; Zhang X; Chen X; Chen X
    Comput Biol Med; 2022 Oct; 149():105978. PubMed ID: 36037630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.