BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34181586)

  • 1. Onlay-graft of 3D printed Kagome-structure PCL scaffold incorporated with rhBMP-2 based on hyaluronic acid hydrogel.
    Ku JK; Lee KG; Ghim MS; Kim YK; Park SH; Park Y; Cho YS; Lee BK
    Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34181586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensionally printed polycaprolactone/beta-tricalcium phosphate scaffold was more effective as an rhBMP-2 carrier for new bone formation than polycaprolactone alone.
    Park SA; Lee HJ; Kim SY; Kim KS; Jo DW; Park SY
    J Biomed Mater Res A; 2021 Jun; 109(6):840-848. PubMed ID: 32776655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.
    Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of 3D printed polycaprolactone composite scaffold and recombinant human bone morphogenetic protein-2 for vertical bone augmentation with simultaneous implant placement on rabbit calvaria.
    Chang YY; Lee S; Jeong HJ; Cho YS; Lee SJ; Yun JH
    J Biomed Mater Res B Appl Biomater; 2022 May; 110(5):1103-1112. PubMed ID: 34874103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect.
    Shim JH; Kim SE; Park JY; Kundu J; Kim SW; Kang SS; Cho DW
    Tissue Eng Part A; 2014 Jul; 20(13-14):1980-92. PubMed ID: 24517081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation.
    Parry JA; Olthof MG; Shogren KL; Dadsetan M; Van Wijnen A; Yaszemski M; Kakar S
    Tissue Eng Part A; 2017 Apr; 23(7-8):359-365. PubMed ID: 28081675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction.
    Lee S; Choi D; Shim JH; Nam W
    Sci Rep; 2020 Mar; 10(1):4979. PubMed ID: 32188900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold.
    Wang H; Wu G; Zhang J; Zhou K; Yin B; Su X; Qiu G; Yang G; Zhang X; Zhou G; Wu Z
    Colloids Surf B Biointerfaces; 2016 May; 141():491-498. PubMed ID: 26896655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Fracture-Treatment Method: Fixing 3D-Printed Polycaprolactone Scaffolds with Hydrogel Type Bone-Derived Extracellular Matrix and β-Tricalcium Phosphate as an Osteogenic Promoter.
    Yun S; Choi D; Choi DJ; Jin S; Yun WS; Huh JB; Shim JH
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.
    Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM
    Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia.
    Han SH; Cha M; Jin YZ; Lee KM; Lee JH
    Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential bone regeneration effects of leptin- and osteolectin-coated 3D-printed PCL scaffolds: an
    Kim YR; Yun EB; Ryu DI; Kim BH; Kim JS; Kim YS; Kang JH; Cho EH; Koh JT; Lim HP; Park C; Lee BN
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38688311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoinductivity and biomechanical assessment of a 3D printed demineralized bone matrix-ceramic composite in a rat spine fusion model.
    Plantz MA; Minardi S; Lyons JG; Greene AC; Ellenbogen DJ; Hallman M; Yamaguchi JT; Jeong S; Yun C; Jakus AE; Blank KR; Havey RM; Muriuki M; Patwardhan AG; Shah RN; Hsu WK; Stock SR; Hsu EL
    Acta Biomater; 2021 Jun; 127():146-158. PubMed ID: 33831576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
    Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ
    Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model.
    Yong MR; Saifzadeh S; Woodruff M; Askin GN; Labrom RD; Hutmacher DW; Adam CJ
    Eur Spine J; 2014 Mar; 23(3):650-7. PubMed ID: 24253932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.