BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34181805)

  • 1. The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets.
    Burns JE; Hurst CD; Knowles MA; Phillips RM; Allison SJ
    Cancer Sci; 2021 Sep; 112(9):3822-3834. PubMed ID: 34181805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer.
    Jiang F; Ma S; Xue Y; Hou J; Zhang Y
    Biochem Biophys Res Commun; 2016 Jan; 469(4):985-92. PubMed ID: 26721441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slug contributes to cadherin switch and malignant progression in muscle-invasive bladder cancer development.
    Wu K; Zeng J; Zhou J; Fan J; Chen Y; Wang Z; Zhang T; Wang X; He D
    Urol Oncol; 2013 Nov; 31(8):1751-60. PubMed ID: 22421353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer.
    Wang J; Wang H; Liu A; Fang C; Hao J; Wang Z
    Oncotarget; 2015 Aug; 6(23):19456-68. PubMed ID: 26062441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic Activity, ATP or Survival.
    Mack N; Mazzio EA; Bauer D; Flores-Rozas H; Soliman KF
    Anticancer Res; 2017 Mar; 37(3):1205-1212. PubMed ID: 28314283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells.
    Fan J; Hitosugi T; Chung TW; Xie J; Ge Q; Gu TL; Polakiewicz RD; Chen GZ; Boggon TJ; Lonial S; Khuri FR; Kang S; Chen J
    Mol Cell Biol; 2011 Dec; 31(24):4938-50. PubMed ID: 21969607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase.
    Mazzio E; Badisa R; Mack N; Cassim S; Zdralevic M; Pouyssegur J; Soliman KFA
    Cancer Genomics Proteomics; 2020; 17(5):469-497. PubMed ID: 32859627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism.
    Conde VR; Oliveira PF; Nunes AR; Rocha CS; Ramalhosa E; Pereira JA; Alves MG; Silva BM
    Exp Cell Res; 2015 Jul; 335(1):91-8. PubMed ID: 25907297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate dehydrogenase inhibitors can reverse inflammation induced changes in colon cancer cells.
    Manerba M; Di Ianni L; Govoni M; Roberti M; Recanatini M; Di Stefano G
    Eur J Pharm Sci; 2017 Jan; 96():37-44. PubMed ID: 27622920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the suppression of lactate dehydrogenase A on the growth and invasion of human gastric cancer cells.
    Liu X; Yang Z; Chen Z; Chen R; Zhao D; Zhou Y; Qiao L
    Oncol Rep; 2015 Jan; 33(1):157-62. PubMed ID: 25394466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism.
    Ždralević M; Brand A; Di Ianni L; Dettmer K; Reinders J; Singer K; Peter K; Schnell A; Bruss C; Decking SM; Koehl G; Felipe-Abrio B; Durivault J; Bayer P; Evangelista M; O'Brien T; Oefner PJ; Renner K; Pouysségur J; Kreutz M
    J Biol Chem; 2018 Oct; 293(41):15947-15961. PubMed ID: 30158244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer.
    Augoff K; Hryniewicz-Jankowska A; Tabola R
    Cancer Lett; 2015 Mar; 358(1):1-7. PubMed ID: 25528630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition.
    Liang W; Hao Z; Han JL; Zhu DJ; Jin ZF; Xie WL
    Urol Oncol; 2014 Aug; 32(6):855-63. PubMed ID: 24968949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro.
    Seliger C; Leukel P; Moeckel S; Jachnik B; Lottaz C; Kreutz M; Brawanski A; Proescholdt M; Bogdahn U; Bosserhoff AK; Vollmann-Zwerenz A; Hau P
    PLoS One; 2013; 8(11):e78935. PubMed ID: 24223867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epithelial-To-Mesenchymal Transition and Its Correlation With Clinicopathologic Features in Patients With Urothelial Carcinoma of the Bladder.
    Singh R; Ansari JA; Maurya N; Mandhani A; Agrawal V; Garg M
    Clin Genitourin Cancer; 2017 Apr; 15(2):e187-e197. PubMed ID: 27601277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect.
    Li L; Kang L; Zhao W; Feng Y; Liu W; Wang T; Mai H; Huang J; Chen S; Liang Y; Han J; Xu X; Ye Q
    Cancer Lett; 2017 Aug; 400():89-98. PubMed ID: 28461244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Pyruvate Dehydrogenase Kinase-4 (PDK4) in Bladder Cancer and Chemoresistance.
    Woolbright BL; Choudhary D; Mikhalyuk A; Trammel C; Shanmugam S; Abbott E; Pilbeam CC; Taylor JA
    Mol Cancer Ther; 2018 Sep; 17(9):2004-2012. PubMed ID: 29907593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate dehydrogenase-B is silenced by promoter methylation in a high frequency of human breast cancers.
    Brown NJ; Higham SE; Perunovic B; Arafa M; Balasubramanian S; Rehman I
    PLoS One; 2013; 8(2):e57697. PubMed ID: 23437403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malic Enzyme 1 Is Associated with Tumor Budding in Oral Squamous Cell Carcinomas.
    Nakashima C; Kirita T; Yamamoto K; Mori S; Luo Y; Sasaki T; Fujii K; Ohmori H; Kawahara I; Mori T; Goto K; Kishi S; Fujiwara-Tani R; Kuniyasu H
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32998265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.
    Witkiewicz AK; Whitaker-Menezes D; Dasgupta A; Philp NJ; Lin Z; Gandara R; Sneddon S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Mar; 11(6):1108-17. PubMed ID: 22313602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.