These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34181858)

  • 1. Multibounce and Subsurface Scattering of H Atoms Colliding with a van der Waals Solid.
    Hertl N; Kandratsenka A; Bünermann O; Wodtke AM
    J Phys Chem A; 2021 Jul; 125(26):5745-5752. PubMed ID: 34181858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorbate modification of electronic nonadiabaticity: H atom scattering from p(2 × 2) O on Pt(111).
    Lecroart L; Hertl N; Dorenkamp Y; Jiang H; Kitsopoulos TN; Kandratsenka A; Bünermann O; Wodtke AM
    J Chem Phys; 2021 Jul; 155(3):034702. PubMed ID: 34293879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).
    Kroes GJ; Pavanello M; Blanco-Rey M; Alducin M; Auerbach DJ
    J Chem Phys; 2014 Aug; 141(5):054705. PubMed ID: 25106598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective medium theory for bcc metals: electronically non-adiabatic H atom scattering in full dimensions.
    Hertl N; Kandratsenka A; Wodtke AM
    Phys Chem Chem Phys; 2022 Apr; 24(15):8738-8748. PubMed ID: 35373798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular interactions with ice: molecular embedding, adsorption, detection, and release.
    Gibson KD; Langlois GG; Li W; Killelea DR; Sibener SJ
    J Chem Phys; 2014 Nov; 141(18):18C514. PubMed ID: 25399179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.
    Janke SM; Auerbach DJ; Wodtke AM; Kandratsenka A
    J Chem Phys; 2015 Sep; 143(12):124708. PubMed ID: 26429033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New results for the OH (nu = 0,j = 0) + CO (nu = 0,j = 0) --> H + CO2 reaction: Five- and full-dimensional quantum dynamical study on several potential energy surfaces.
    Valero R; McCormack DA; Kroes GJ
    J Chem Phys; 2004 Mar; 120(9):4263-72. PubMed ID: 15268595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H(D) → D(H) + Cu(111) collision system: molecular dynamics study of surface temperature effects.
    Vurdu CD; Güvenç ZB
    J Chem Phys; 2011 Apr; 134(16):164306. PubMed ID: 21528959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption.
    Dorenkamp Y; Jiang H; Köckert H; Hertl N; Kammler M; Janke SM; Kandratsenka A; Wodtke AM; Bünermann O
    J Chem Phys; 2018 Jan; 148(3):034706. PubMed ID: 29352780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scattering of Xe from graphite.
    Hayes WW; Manson JR
    J Phys Chem A; 2011 Jun; 115(25):6838-42. PubMed ID: 21410274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scattering of NH3 and ND3 with rare gas atoms at low collision energy.
    Loreau J; van der Avoird A
    J Chem Phys; 2015 Nov; 143(18):184303. PubMed ID: 26567658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of energy transfer in collisions of O(3P) atoms with a 1-decanethiol self-assembled monolayer surface.
    Tasić US; Yan T; Hase WL
    J Phys Chem B; 2006 Jun; 110(24):11863-77. PubMed ID: 16800489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimentally validated neural-network potential energy surface for H-atom on free-standing graphene in full dimensionality.
    Wille S; Jiang H; Bünermann O; Wodtke AM; Behler J; Kandratsenka A
    Phys Chem Chem Phys; 2020 Nov; 22(45):26113-26120. PubMed ID: 32915176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociative chemisorption of H2 on the Cu(110) surface: a quantum and quasiclassical dynamical study.
    Kroes GJ; Pijper E; Salin A
    J Chem Phys; 2007 Oct; 127(16):164722. PubMed ID: 17979386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum and classical molecular dynamics for H atom scattering from graphene.
    Shi L; Schröder M; Meyer HD; Peláez D; Wodtke AM; Golibrzuch K; Schönemann AM; Kandratsenka A; Gatti F
    J Chem Phys; 2023 Nov; 159(19):. PubMed ID: 37965999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic and glancing-angle rate coefficients for heating of ultracold Li and Rb atoms by collisions with room-temperature noble gases, H
    Kłos J; Tiesinga E
    J Chem Phys; 2023 Jan; 158(1):014308. PubMed ID: 36610981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and dynamics of the reaction of XeF2 with fluorinated Si(100): possible role of gas phase dissociation of a surface reaction product in plasmaless etching.
    Hefty RC; Holt JR; Tate MR; Ceyer ST
    J Chem Phys; 2009 Apr; 130(16):164714. PubMed ID: 19405623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoionisation study of Xe.CF4 and Kr.CF4 van-der-Waals molecules.
    Alekseev VA; Garcia GA; Kevorkyants R; Nahon L
    J Chem Phys; 2016 May; 144(18):184305. PubMed ID: 27179482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H atom scattering from W(110): A benchmark for molecular dynamics with electronic friction.
    Martin-Barrios R; Hertl N; Galparsoro O; Kandratsenka A; Wodtke AM; Larrégaray P
    Phys Chem Chem Phys; 2022 Sep; 24(35):20813-20819. PubMed ID: 36004823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Van der Waals interactions and the limits of isolated atom models at interfaces.
    Kawai S; Foster AS; Björkman T; Nowakowska S; Björk J; Canova FF; Gade LH; Jung TA; Meyer E
    Nat Commun; 2016 May; 7():11559. PubMed ID: 27174162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.