These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 34181980)
1. Dynamic Autoinhibition of the HMGB1 Protein via Electrostatic Fuzzy Interactions of Intrinsically Disordered Regions. Wang X; Greenblatt HM; Bigman LS; Yu B; Pletka CC; Levy Y; Iwahara J J Mol Biol; 2021 Sep; 433(18):167122. PubMed ID: 34181980 [TBL] [Abstract][Full Text] [Related]
2. Influence of an Intrinsically Disordered Region on Protein Domains Revealed by NMR-Based Electrostatic Potential Measurements. Yu B; Wang X; Tan KN; Iwahara J J Am Chem Soc; 2024 Jun; 146(22):14922-14926. PubMed ID: 38771003 [TBL] [Abstract][Full Text] [Related]
3. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Wang X; Bigman LS; Greenblatt HM; Yu B; Levy Y; Iwahara J Nucleic Acids Res; 2023 Jun; 51(10):4701-4712. PubMed ID: 36774964 [TBL] [Abstract][Full Text] [Related]
4. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos. Xue Y; Yuwen T; Zhu F; Skrynnikov NR Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671 [TBL] [Abstract][Full Text] [Related]
5. Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains. Stott K; Watson M; Howe FS; Grossmann JG; Thomas JO J Mol Biol; 2010 Nov; 403(5):706-22. PubMed ID: 20691192 [TBL] [Abstract][Full Text] [Related]
6. Influence of electrostatic forces on the association kinetics and conformational ensemble of an intrinsically disordered protein. Cook EC; Creamer TP Proteins; 2020 Dec; 88(12):1607-1619. PubMed ID: 32654182 [TBL] [Abstract][Full Text] [Related]
7. Structured and disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1, ETV4 and ETV5. Currie SL; Lau DKW; Doane JJ; Whitby FG; Okon M; McIntosh LP; Graves BJ Nucleic Acids Res; 2017 Mar; 45(5):2223-2241. PubMed ID: 28161714 [TBL] [Abstract][Full Text] [Related]
8. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos. Yuwen T; Xue Y; Skrynnikov NR Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732 [TBL] [Abstract][Full Text] [Related]
9. Molecular Mechanisms of Tight Binding through Fuzzy Interactions. Shen Q; Shi J; Zeng D; Zhao B; Li P; Hwang W; Cho JH Biophys J; 2018 Mar; 114(6):1313-1320. PubMed ID: 29590589 [TBL] [Abstract][Full Text] [Related]
10. Conformational Dynamics and the Binding of Specific and Nonspecific DNA by the Autoinhibited Transcription Factor Ets-1. Desjardins G; Okon M; Graves BJ; McIntosh LP Biochemistry; 2016 Jul; 55(29):4105-18. PubMed ID: 27362745 [TBL] [Abstract][Full Text] [Related]
11. The Dynamic Multisite Interactions between Two Intrinsically Disordered Proteins. Wu S; Wang D; Liu J; Feng Y; Weng J; Li Y; Gao X; Liu J; Wang W Angew Chem Int Ed Engl; 2017 Jun; 56(26):7515-7519. PubMed ID: 28493424 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation by Protein Kinase C Weakens DNA-Binding Affinity and Folding Stability of the HMGB1 Protein. Wang X; Holthauzen LMF; Paz-Villatoro JM; Bien KG; Yu B; Iwahara J Biochemistry; 2024 Jul; 63(14):1718-1722. PubMed ID: 38916994 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic interactions in molecular recognition of intrinsically disordered proteins. Yang J; Zeng Y; Liu Y; Gao M; Liu S; Su Z; Huang Y J Biomol Struct Dyn; 2020 Oct; 38(16):4883-4894. PubMed ID: 31709918 [TBL] [Abstract][Full Text] [Related]
14. Elucidating binding mechanisms and dynamics of intrinsically disordered protein complexes using NMR spectroscopy. Schneider R; Blackledge M; Jensen MR Curr Opin Struct Biol; 2019 Feb; 54():10-18. PubMed ID: 30316104 [TBL] [Abstract][Full Text] [Related]
15. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility. Basu S; Biswas P Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):624-641. PubMed ID: 29548979 [TBL] [Abstract][Full Text] [Related]
16. Deciphering the promiscuous interactions between intrinsically disordered transactivation domains and the KIX domain. Huang Y; Gao M; Yang F; Zhang L; Su Z Proteins; 2017 Nov; 85(11):2088-2095. PubMed ID: 28786199 [TBL] [Abstract][Full Text] [Related]
17. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy. Delaforge E; Kragelj J; Tengo L; Palencia A; Milles S; Bouvignies G; Salvi N; Blackledge M; Jensen MR J Am Chem Soc; 2018 Jan; 140(3):1148-1158. PubMed ID: 29276882 [TBL] [Abstract][Full Text] [Related]
18. Structural insight into the interaction between the Hox and HMGB1 and understanding of the HMGB1-enhancing effect of Hox-DNA binding. Kim HH; Park SJ; Han JH; Pathak C; Cheong HK; Lee BJ Biochim Biophys Acta; 2015 May; 1854(5):449-59. PubMed ID: 25707357 [TBL] [Abstract][Full Text] [Related]
19. DNA-mediated proteolysis by neutrophil elastase enhances binding activities of the HMGB1 protein. Wang X; Mayorga-Flores M; Bien KG; Bailey AO; Iwahara J J Biol Chem; 2022 Nov; 298(11):102577. PubMed ID: 36220391 [TBL] [Abstract][Full Text] [Related]
20. Interactions of the basic N-terminal and the acidic C-terminal domains of the maize chromosomal HMGB1 protein. Thomsen MS; Franssen L; Launholt D; Fojan P; Grasser KD Biochemistry; 2004 Jun; 43(25):8029-37. PubMed ID: 15209498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]