BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34181980)

  • 1. Dynamic Autoinhibition of the HMGB1 Protein via Electrostatic Fuzzy Interactions of Intrinsically Disordered Regions.
    Wang X; Greenblatt HM; Bigman LS; Yu B; Pletka CC; Levy Y; Iwahara J
    J Mol Biol; 2021 Sep; 433(18):167122. PubMed ID: 34181980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of an Intrinsically Disordered Region on Protein Domains Revealed by NMR-Based Electrostatic Potential Measurements.
    Yu B; Wang X; Tan KN; Iwahara J
    J Am Chem Soc; 2024 Jun; 146(22):14922-14926. PubMed ID: 38771003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins.
    Wang X; Bigman LS; Greenblatt HM; Yu B; Levy Y; Iwahara J
    Nucleic Acids Res; 2023 Jun; 51(10):4701-4712. PubMed ID: 36774964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains.
    Stott K; Watson M; Howe FS; Grossmann JG; Thomas JO
    J Mol Biol; 2010 Nov; 403(5):706-22. PubMed ID: 20691192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of electrostatic forces on the association kinetics and conformational ensemble of an intrinsically disordered protein.
    Cook EC; Creamer TP
    Proteins; 2020 Dec; 88(12):1607-1619. PubMed ID: 32654182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structured and disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1, ETV4 and ETV5.
    Currie SL; Lau DKW; Doane JJ; Whitby FG; Okon M; McIntosh LP; Graves BJ
    Nucleic Acids Res; 2017 Mar; 45(5):2223-2241. PubMed ID: 28161714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanisms of Tight Binding through Fuzzy Interactions.
    Shen Q; Shi J; Zeng D; Zhao B; Li P; Hwang W; Cho JH
    Biophys J; 2018 Mar; 114(6):1313-1320. PubMed ID: 29590589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational Dynamics and the Binding of Specific and Nonspecific DNA by the Autoinhibited Transcription Factor Ets-1.
    Desjardins G; Okon M; Graves BJ; McIntosh LP
    Biochemistry; 2016 Jul; 55(29):4105-18. PubMed ID: 27362745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Dynamic Multisite Interactions between Two Intrinsically Disordered Proteins.
    Wu S; Wang D; Liu J; Feng Y; Weng J; Li Y; Gao X; Liu J; Wang W
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7515-7519. PubMed ID: 28493424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic interactions in molecular recognition of intrinsically disordered proteins.
    Yang J; Zeng Y; Liu Y; Gao M; Liu S; Su Z; Huang Y
    J Biomol Struct Dyn; 2020 Oct; 38(16):4883-4894. PubMed ID: 31709918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating binding mechanisms and dynamics of intrinsically disordered protein complexes using NMR spectroscopy.
    Schneider R; Blackledge M; Jensen MR
    Curr Opin Struct Biol; 2019 Feb; 54():10-18. PubMed ID: 30316104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility.
    Basu S; Biswas P
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):624-641. PubMed ID: 29548979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the promiscuous interactions between intrinsically disordered transactivation domains and the KIX domain.
    Huang Y; Gao M; Yang F; Zhang L; Su Z
    Proteins; 2017 Nov; 85(11):2088-2095. PubMed ID: 28786199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.
    Delaforge E; Kragelj J; Tengo L; Palencia A; Milles S; Bouvignies G; Salvi N; Blackledge M; Jensen MR
    J Am Chem Soc; 2018 Jan; 140(3):1148-1158. PubMed ID: 29276882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insight into the interaction between the Hox and HMGB1 and understanding of the HMGB1-enhancing effect of Hox-DNA binding.
    Kim HH; Park SJ; Han JH; Pathak C; Cheong HK; Lee BJ
    Biochim Biophys Acta; 2015 May; 1854(5):449-59. PubMed ID: 25707357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-mediated proteolysis by neutrophil elastase enhances binding activities of the HMGB1 protein.
    Wang X; Mayorga-Flores M; Bien KG; Bailey AO; Iwahara J
    J Biol Chem; 2022 Nov; 298(11):102577. PubMed ID: 36220391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of the basic N-terminal and the acidic C-terminal domains of the maize chromosomal HMGB1 protein.
    Thomsen MS; Franssen L; Launholt D; Fojan P; Grasser KD
    Biochemistry; 2004 Jun; 43(25):8029-37. PubMed ID: 15209498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic control of calcineurin's intrinsically-disordered regulatory domain binding to calmodulin.
    Sun B; Cook EC; Creamer TP; Kekenes-Huskey PM
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2651-2659. PubMed ID: 30071273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.