These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34182054)

  • 1. Norursane-type triterpenoids from Rosmarinus officinalis and their anti-inflammatory activity evaluation.
    Zhou N; Wang ZY; Wu Y; Zhong XJ; Wang X; Li JJ; Shang XY
    Fitoterapia; 2021 Sep; 153():104982. PubMed ID: 34182054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nine new dichapetalin-type triterpenoids from the twigs of Dichapetalum gelonioides (Roxb.) Engl.
    Zhang DL; Li M; Xu WF; Yu H; Jin PF; Li SY; Tang SA
    Fitoterapia; 2021 Jun; 151():104868. PubMed ID: 33652077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three new ursane-type triterpenoids from Rosmarinus officinalis and their biological activities.
    Zhong XJ; Zhou N; Wang X; Li JJ; Ma H; Jiao Y; Xu JH; Lin PC; Shang XY
    Chin J Nat Med; 2022 Feb; 20(2):155-160. PubMed ID: 35279243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triterpenes from Salvia argentea var. aurasiaca and their antibacterial and cytotoxic activities.
    Bechkri S; Alabdul Magid A; Voutquenne-Nazabadioko L; Berrehal D; Kabouche A; Lehbili M; Lakhal H; Abedini A; Gangloff SC; Morjani H; Kabouche Z
    Fitoterapia; 2019 Nov; 139():104296. PubMed ID: 31401222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triterpenoids from Euphorbia pulcherrima with inhibitory effects on osteoclastogenesis.
    Dai Y; Liu S; Xu J; Zhao C; Gu Q
    Fitoterapia; 2019 Apr; 134():355-361. PubMed ID: 30858048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seco-nortriterpenoids from Cirsium setosum and their anti-inflammatory activity.
    Xu QJ; Liu JC; Huang CJ; Wang X; Shang XY
    Fitoterapia; 2024 Jun; 175():105879. PubMed ID: 38417679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iridoids with anti-inflammatory effect from the aerial parts of Morinda officinalis How.
    Cai M; Liu M; Chen P; Liu H; Wang Y; Yang D; Zhao Z; Ding P
    Fitoterapia; 2021 Sep; 153():104991. PubMed ID: 34265404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-inflammatory constituents from Psychotria prainii H. Lév.
    Tran PH; Le VD; Do TH; Nguyen TL; Nguyen PT; Nguyen TT; Nguyen TD
    Nat Prod Res; 2019 Mar; 33(5):695-700. PubMed ID: 29212359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New triterpenoids, steroids and lignan from the stem barks of Entandrophragma utile.
    Hu YL; Tian XM; Wang CC; Olga Q; Yan D; Tang PF; Zhang LN; Kong LY; Luo J
    Fitoterapia; 2020 Jun; 143():104546. PubMed ID: 32173423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three Novel Triterpenoids from Taraxacum officinale Roots.
    Kikuchi T; Tanaka A; Uriuda M; Yamada T; Tanaka R
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27618885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rosanortriterpene C, a 3,24-Dinor-2,4-seco-ursane Triterpene from the Fruits of Rosa laevigata var. leiocapus.
    Tian Y; Feng L; Li B; Hu J; Xie J; Xiao W; Nie L; Wu J
    Chem Pharm Bull (Tokyo); 2019; 67(11):1255-1258. PubMed ID: 31685754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts.
    Zhang Y; Adelakun TA; Qu L; Li X; Li J; Han L; Wang T
    Fitoterapia; 2014 Dec; 99():78-85. PubMed ID: 25200369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical components with biological activities in the roots of Ilex pubescens.
    Tan Z; Li Y; Wu Y; Yang H; Zhang H; Liu Z; Cheng Y; Wu P
    Fitoterapia; 2024 Sep; 177():106076. PubMed ID: 38897247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactivity-guided isolation of anti-inflammatory triterpenoids from the sclerotia of Poria cocos using LPS-stimulated Raw264.7 cells.
    Lee SR; Lee S; Moon E; Park HJ; Park HB; Kim KH
    Bioorg Chem; 2017 Feb; 70():94-99. PubMed ID: 27912907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three new hopane-type triterpenoids from the aerial part of Adiantum capillus-veneris and their antimicrobial activities.
    Zhang X; Chen HL; Hong L; Xu LL; Gong XW; Zhu DL; Xu XH; Zhao W; Wang F; Yang XL
    Fitoterapia; 2019 Mar; 133():146-149. PubMed ID: 30654129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory Effects of Constituents from the Aerial Parts of Rosmarinus officinalis L. on Triglyceride Accumulation.
    Li J; Adelakun TA; Wang S; Ruan J; Yang S; Li X; Zhang Y; Wang T
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoterpenoid indole alkaloids from the stems of Kopsia officinalis.
    Xie TZ; Zhao YL; He JJ; Zhao LX; Wei X; Liu YP; Luo XD
    Fitoterapia; 2020 Jun; 143():104547. PubMed ID: 32173419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diterpenoid quinones from rosemary (Rosmarinus officinalis L.).
    Mahmoud AA; Al-Shihry SS; Son BW
    Phytochemistry; 2005 Jul; 66(14):1685-90. PubMed ID: 15950250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive compounds from the aerial parts of
    Nguyen Viet D; Le Ba V; Nguyen Duy T; Pham Thi VA; Tran Thi H; Le Canh VC; Bach Long G; Kim YH; Tuan Anh HL
    Nat Prod Res; 2021 Feb; 35(4):646-648. PubMed ID: 30942092
    [No Abstract]   [Full Text] [Related]  

  • 20. Antibacterial, antioxidant and cytotoxic activities of triterpenes and flavonoids from the aerial parts of Salvia barrelieri Etl.
    Lehbili M; Alabdul Magid A; Kabouche A; Voutquenne-Nazabadioko L; Abedini A; Morjani H; Gangloff SC; Kabouche Z
    Nat Prod Res; 2018 Nov; 32(22):2683-2691. PubMed ID: 28925304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.