These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34182140)

  • 1. A guide to accelerated direct digital counting of single nucleic acid molecules by FRET-based intramolecular kinetic fingerprinting.
    Mandal S; Khanna K; Johnson-Buck A; Walter NG
    Methods; 2022 Jan; 197():63-73. PubMed ID: 34182140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid kinetic fingerprinting of single nucleic acid molecules by a FRET-based dynamic nanosensor.
    Khanna K; Mandal S; Blanchard AT; Tewari M; Johnson-Buck A; Walter NG
    Biosens Bioelectron; 2021 Oct; 190():113433. PubMed ID: 34171818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Kinetic Fingerprinting for High-Accuracy Single-Molecule Counting of Diverse Disease Biomarkers.
    Mandal S; Li Z; Chatterjee T; Khanna K; Montoya K; Dai L; Petersen C; Li L; Tewari M; Johnson-Buck A; Walter NG
    Acc Chem Res; 2021 Jan; 54(2):388-402. PubMed ID: 33382587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attomolar Sensitivity in Single Biomarker Counting upon Aqueous Two-Phase Surface Enrichment.
    Li Z; McNeely M; Sandford E; Tewari M; Johnson-Buck A; Walter NG
    ACS Sens; 2022 May; 7(5):1419-1430. PubMed ID: 35438959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to nucleic acid detection by single-molecule kinetic fingerprinting.
    Johnson-Buck A; Li J; Tewari M; Walter NG
    Methods; 2019 Jan; 153():3-12. PubMed ID: 30099084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic fingerprinting to identify and count single nucleic acids.
    Johnson-Buck A; Su X; Giraldez MD; Zhao M; Tewari M; Walter NG
    Nat Biotechnol; 2015 Jul; 33(7):730-2. PubMed ID: 26098451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct kinetic fingerprinting and digital counting of single protein molecules.
    Chatterjee T; Knappik A; Sandford E; Tewari M; Choi SW; Strong WB; Thrush EP; Oh KJ; Liu N; Walter NG; Johnson-Buck A
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22815-22822. PubMed ID: 32868420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Molecule FRET Analysis of DNA Binding Proteins.
    Chaurasiya KR; Dame RT
    Methods Mol Biol; 2018; 1665():217-239. PubMed ID: 28940072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer.
    Hadzic MCAS; Sigel RKO; Börner R
    Methods Mol Biol; 2022; 2439():173-190. PubMed ID: 35226322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed smFRET Nucleic Acid Sensing Using DNA Nanotweezers.
    Kaur A; Mahmoud R; Megalathan A; Pettit S; Dhakal S
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target-assisted FRET signal amplification for ultrasensitive detection of microRNA.
    Wang B; You Z; Ren D
    Analyst; 2019 Mar; 144(7):2304-2311. PubMed ID: 30672513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Selective FRET-Aided Single-Molecule Counting of MicroRNAs Labeled by Splinted Ligation.
    Joo S; Lee UJ; Son HY; Kim M; Huh YM; Lee TG; Lee M
    ACS Sens; 2022 Nov; 7(11):3409-3415. PubMed ID: 36279317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated Digital Biodetection Using Magneto-plasmonic Nanoparticle-Coupled Photonic Resonator Absorption Microscopy.
    Che C; Xue R; Li N; Gupta P; Wang X; Zhao B; Singamaneni S; Nie S; Cunningham BT
    ACS Nano; 2022 Feb; 16(2):2345-2354. PubMed ID: 35040633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of microRNAs using toehold-initiated rolling circle amplification and fluorescence resonance energy transfer.
    Liang K; Wang H; Li P; Zhu Y; Liu J; Tang B
    Talanta; 2020 Jan; 207():120285. PubMed ID: 31594625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile single-molecule counting-based platform by generation of fluorescent silver nanoclusters for sensitive detection of multiple nucleic acids.
    Peng M; Fang Z; Na N; Ouyang J
    Nanoscale; 2019 Sep; 11(35):16606-16613. PubMed ID: 31460540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Step FRET-Based Detection of Femtomoles DNA.
    Sapkota K; Kaur A; Megalathan A; Donkoh-Moore C; Dhakal S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dandelion-like liposomes-encoded magnetic bead probe-based toehold-mediated DNA circuit for the amplification detection of MiRNA.
    Kong Y; Liu X; Liu C; Xue Q; Li X; Wang H
    Analyst; 2019 Aug; 144(15):4694-4701. PubMed ID: 31268436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.
    Li W; Jiang W; Ding Y; Wang L
    Biosens Bioelectron; 2015 Sep; 71():401-406. PubMed ID: 25950935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection.
    Ren X; Xue Q; Wen L; Li X; Wang H
    Anal Chim Acta; 2019 Apr; 1053():114-121. PubMed ID: 30712556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Enzyme-Free MicroRNA Assay Based On Fluorescence Counting of Click Chemical Ligation-Illuminated Magnetic Nanoparticles with Total Internal Reflection Fluorescence Microscopy.
    Qi Y; Lu X; Feng Q; Fan W; Liu C; Li Z
    ACS Sens; 2018 Dec; 3(12):2667-2674. PubMed ID: 30456947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.