BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34182324)

  • 1. Mechanical performance of thoracolumbosacral pedicle screw systems: An analysis of data submitted to the Food and Drug Administration.
    Peck JH; Cadel E; Palepu V; Ferrell BM; Warner CH
    J Biomech; 2021 Aug; 125():110551. PubMed ID: 34182324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and biomechanical study of a modified pedicle screw.
    Liu T; Zheng WJ; Li CQ; Liu GD; Zhou Y
    Chin J Traumatol; 2010 Aug; 13(4):222-8. PubMed ID: 20670579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal rod gripping capacity: how do 5.5/6.0-mm dual-diameter screws compare?
    Kluck DG; Farnsworth CL; Jeffords ME; Marino NE; Yaszay B; Upasani VV; Newton PO
    Spine Deform; 2020 Feb; 8(1):25-32. PubMed ID: 31960354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation.
    Kok D; Firkins PJ; Wapstra FH; Veldhuizen AG
    BMC Musculoskelet Disord; 2013 Sep; 14():269. PubMed ID: 24047109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical stability according to different configurations of screws and rods.
    Ha KY; Hwang SC; Whang TH
    J Spinal Disord Tech; 2013 May; 26(3):155-60. PubMed ID: 22105105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical investigation of different screw head designs for vertebral derotation in scoliosis surgery.
    Liu PY; Lai PL; Lin CL
    Spine J; 2017 Aug; 17(8):1171-1179. PubMed ID: 28414169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell.
    Demir T
    Proc Inst Mech Eng H; 2015 May; 229(5):386-94. PubMed ID: 25991716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does a novel monoplanar pedicle screw perform biomechanically relative to monoaxial and polyaxial designs?
    Schroerlucke SR; Steklov N; Mundis GM; Marino JF; Akbarnia BA; Eastlack RK
    Clin Orthop Relat Res; 2014 Sep; 472(9):2826-32. PubMed ID: 24920048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical screws used to rescue failed lumbar pedicle screw construct: a biomechanical analysis.
    Calvert GC; Lawrence BD; Abtahi AM; Bachus KN; Brodke DS
    J Neurosurg Spine; 2015 Feb; 22(2):166-72. PubMed ID: 25478820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation.
    Murakami H; Tsai KJ; Attallah-Wasif ES; Yamazaki K; Shimamura T; Hutton WC
    Spine (Phila Pa 1976); 2006 Apr; 31(9):967-71. PubMed ID: 16641771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support.
    Chen SH; Mo Lin R; Chen HH; Tsai KJ
    BMC Musculoskelet Disord; 2007 Mar; 8():28. PubMed ID: 17349057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical performance of lumbar intervertebral body fusion devices: An analysis of data submitted to the Food and Drug Administration.
    Peck JH; Kavlock KD; Showalter BL; Ferrell BM; Peck DG; Dmitriev AE
    J Biomech; 2018 Sep; 78():87-93. PubMed ID: 30060922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and Spine Pedicle Screws Fixation Strength-A Comparative Study of Bone Density and Insertion Angle.
    Amirouche F; Solitro GF; Magnan BP
    Spine Deform; 2016 Jul; 4(4):261-267. PubMed ID: 27927514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical Analysis of Pedicle Screw Fixation for Thoracolumbar Burst Fractures.
    McDonnell M; Shah KN; Paller DJ; Thakur NA; Koruprolu S; Palumbo MA; Daniels AH
    Orthopedics; 2016 May; 39(3):e514-8. PubMed ID: 27135451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of posterior fusion constructs as treatments for middle and posterior column injuries: an in vitro biomechanical investigation.
    Doulgeris JJ; Aghayev K; Gonzalez-Blohm SA; Del Valle M; Waddell J; Lee WE; Vrionis FD
    Clin Biomech (Bristol, Avon); 2013 Jun; 28(5):483-9. PubMed ID: 23707137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of iliac screw, S2 alar-iliac screw and laterally placed triangular titanium implants for sacropelvic fixation in combination with posterior lumbar instrumentation: a finite element study.
    Casaroli G; Galbusera F; Chande R; Lindsey D; Mesiwala A; Yerby S; Brayda-Bruno M
    Eur Spine J; 2019 Jul; 28(7):1724-1732. PubMed ID: 31093749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and biomechanical analysis of an axially controlled compression spinal rod for lumbar spondylolysis.
    Li J; Tang Z; Feng F; Liang J; Shao N; Wang Y; Cai Z; Tang H; Zhou T; Xu Y; Cui Y
    Medicine (Baltimore); 2024 Jun; 103(23):e38520. PubMed ID: 38847663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress analysis of the implants in transforaminal lumbar interbody fusion under static and vibration loadings: a comparison between pedicle screw fixation system with rigid and flexible rods.
    Fan W; Guo LX; Zhao D
    J Mater Sci Mater Med; 2019 Oct; 30(10):118. PubMed ID: 31628540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal satellite rod constructs to mitigate rod failure following pedicle subtraction osteotomy (PSO): a finite element study.
    Seyed Vosoughi A; Joukar A; Kiapour A; Parajuli D; Agarwal AK; Goel VK; Zavatsky J
    Spine J; 2019 May; 19(5):931-941. PubMed ID: 30414992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.