These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34182410)

  • 1. Developing a novel and simple biosensor for Cystatin C as a fascinating marker of glomerular filtration rate with DNase I-aided recycling amplification strategy.
    Wang B; Yu XA; Yin G; Wang J; Jin Y; Wang T
    J Pharm Biomed Anal; 2021 Sep; 203():114230. PubMed ID: 34182410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification.
    Ma L; Guo T; Pan S; Zhang Y
    Mikrochim Acta; 2018 Oct; 185(10):487. PubMed ID: 30276550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection.
    Wang H; Chen H; Huang Z; Li T; Deng A; Kong J
    Talanta; 2018 Jul; 184():219-226. PubMed ID: 29674035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP.
    Lou YF; Peng YB; Luo X; Yang Z; Wang R; Sun D; Li L; Tan Y; Huang J; Cui L
    Mikrochim Acta; 2019 Jul; 186(8):494. PubMed ID: 31267250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and sensitive detection of NGAL for the prediction of acute kidney injury via a polydopamine nanosphere/aptamer nanocomplex coupled with DNase I-assisted recycling amplification.
    Hu Y; Yu XA; Zhang Y; Zhang R; Bai X; Lu M; Li J; Gu L; Liu JH; Yu BY; Tian J
    Analyst; 2020 May; 145(10):3620-3625. PubMed ID: 32338259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptasensor for the Detection of Ochratoxin A Using Graphene Oxide and Deoxyribonuclease I-Aided Signal Amplification.
    Chen W; Kang Y; Qin L; Jiang J; Zhao Y; Zhao Y; Yang Z
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4573-4578. PubMed ID: 33691835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection.
    Xu J; Shi M; Huang H; Hu K; Chen W; Huang Y; Zhao S
    Analyst; 2018 Aug; 143(16):3918-3925. PubMed ID: 30043777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.
    Wei Y; Zhang J; Wang X; Duan Y
    Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters.
    Lin H; Li L; Lei C; Xu X; Nie Z; Guo M; Huang Y; Yao S
    Biosens Bioelectron; 2013 Mar; 41():256-61. PubMed ID: 23017686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.
    Yan G; Wang Y; He X; Wang K; Liu J; Du Y
    Biosens Bioelectron; 2013 Jun; 44():57-63. PubMed ID: 23391707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide.
    Rong Y; Li H; Ouyang Q; Ali S; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118500. PubMed ID: 32470816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex.
    Youn H; Lee K; Her J; Jeon J; Mok J; So JI; Shin S; Ban C
    Sci Rep; 2019 May; 9(1):7659. PubMed ID: 31114011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen.
    Eissa S; Zourob M
    Biosens Bioelectron; 2017 May; 91():169-174. PubMed ID: 28006685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin.
    Yao Y; Jiang C; Ping J
    Biosens Bioelectron; 2019 Jan; 123():178-184. PubMed ID: 30174273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Facile, Label-Free, and Universal Biosensor Platform Based on Target-Induced Graphene Oxide Constrained DNA Dissociation Coupling with Improved Strand Displacement Amplification.
    Huang Z; Luo Z; Chen J; Xu Y; Duan Y
    ACS Sens; 2018 Nov; 3(11):2423-2431. PubMed ID: 30335968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.
    Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q
    Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection.
    Weng X; Neethirajan S
    Biosens Bioelectron; 2016 Nov; 85():649-656. PubMed ID: 27240012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry.
    Zheng Y; Wang X; He S; Gao Z; Di Y; Lu K; Li K; Wang J
    Biosens Bioelectron; 2019 Feb; 126():261-268. PubMed ID: 30445301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification.
    Wang Y; Chen S; Chen W; Wang J; Li K; Hong C; Zhang K; Chen Q
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.