These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34182755)

  • 21. WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β-lactamases.
    Sader HS; Rhomberg PR; Flamm RK; Jones RN; Castanheira M
    J Antimicrob Chemother; 2017 Jun; 72(6):1696-1703. PubMed ID: 28333332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Captopril analogues as metallo-β-lactamase inhibitors.
    Yusof Y; Tan DTC; Arjomandi OK; Schenk G; McGeary RP
    Bioorg Med Chem Lett; 2016 Mar; 26(6):1589-1593. PubMed ID: 26883147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli.
    Zhanel GG; Golden AR; Zelenitsky S; Wiebe K; Lawrence CK; Adam HJ; Idowu T; Domalaon R; Schweizer F; Zhanel MA; Lagacé-Wiens PRS; Walkty AJ; Noreddin A; Lynch Iii JP; Karlowsky JA
    Drugs; 2019 Feb; 79(3):271-289. PubMed ID: 30712199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro antibacterial activity of a new cephalosporin, FR295389, against IMP-type metallo-beta-lactamase-producers.
    Takeda S; Ikeda F; Hatano K
    J Antibiot (Tokyo); 2008 Jan; 61(1):36-9. PubMed ID: 18305358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of peroxidase-catalyzed iodination by cephalosporins: Metallo-beta-lactamase-induced antithyroid activity of antibiotics.
    Tamilselvi A; Mugesh G
    ChemMedChem; 2009 Apr; 4(4):512-6. PubMed ID: 19107757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa.
    Barnes MD; Taracila MA; Rutter JD; Bethel CR; Galdadas I; Hujer AM; Caselli E; Prati F; Dekker JP; Papp-Wallace KM; Haider S; Bonomo RA
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538183
    [No Abstract]   [Full Text] [Related]  

  • 27. Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors.
    Xiang Y; Chang YN; Ge Y; Kang JS; Zhang YL; Liu XL; Oelschlaeger P; Yang KW
    Bioorg Med Chem Lett; 2017 Dec; 27(23):5225-5229. PubMed ID: 29122480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1).
    Ayipo YO; Ahmad I; Alananzeh W; Lawal A; Patel H; Mordi MN
    J Biomol Struct Dyn; 2023 Nov; 41(19):10096-10116. PubMed ID: 36476097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The assemblage of covalent and metal binding dual functional scaffold for cross-class metallo-β-lactamases inhibition.
    Chen C; Liu Y; Zhang YJ; Ge Y; Lei JE; Yang KW
    Future Med Chem; 2019 Sep; 11(18):2381-2394. PubMed ID: 31544522
    [No Abstract]   [Full Text] [Related]  

  • 30. Structural insights into the design of reversible fluorescent probes for metallo-β-lactamases NDM-1, VIM-2, and IMP-1.
    Price S; Mehta R; Tan D; Hinojosa A; Thomas PW; Cummings T; Fast W; Que EL
    J Inorg Biochem; 2022 Aug; 233():111869. PubMed ID: 35653820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors.
    Ma G; Wang S; Wu K; Zhang W; Ahmad A; Hao Q; Lei X; Zhang H
    Bioorg Med Chem; 2021 Jan; 29():115902. PubMed ID: 33302045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity.
    Legru A; Verdirosa F; Hernandez JF; Tassone G; Sannio F; Benvenuti M; Conde PA; Bossis G; Thomas CA; Crowder MW; Dillenberger M; Becker K; Pozzi C; Mangani S; Docquier JD; Gavara L
    Eur J Med Chem; 2021 Dec; 226():113873. PubMed ID: 34626878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the Inhibitory Compounds for Metallo-β-lactamases and Structural Analysis of the Binding Modes.
    Kamo T; Kuroda K; Kondo S; Hayashi U; Fudo S; Yoneda T; Takaya A; Nukaga M; Hoshino T
    Chem Pharm Bull (Tokyo); 2021; 69(12):1179-1183. PubMed ID: 34853284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding.
    Skagseth S; Akhter S; Paulsen MH; Muhammad Z; Lauksund S; Samuelsen Ø; Leiros HS; Bayer A
    Eur J Med Chem; 2017 Jul; 135():159-173. PubMed ID: 28445786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dithiocarbamates: Efficient metallo-β-lactamase inhibitors with good antibacterial activity when combined with meropenem.
    Wang MM; Chu WC; Yang Y; Yang QQ; Qin SS; Zhang E
    Bioorg Med Chem Lett; 2018 Nov; 28(21):3436-3440. PubMed ID: 30262427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interaction of the azetidine thiazole side chain with the active site loop (ASL) 3 drives the evolution of IMP metallo-β-lactamase against tebipenem.
    Ono D; Cmolik A; Bethel CR; Ishii Y; Drusin SI; Moreno DM; Vila AJ; Bonomo RA; Mojica MF
    Antimicrob Agents Chemother; 2024 Aug; 68(8):e0068724. PubMed ID: 39023262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromophore-linked substrate (CLS405): probing metallo-β-lactamase activity and inhibition.
    Makena A; van Berkel SS; Lejeune C; Owens RJ; Verma A; Salimraj R; Spencer J; Brem J; Schofield CJ
    ChemMedChem; 2013 Dec; 8(12):1923-9. PubMed ID: 24166830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases.
    Muhammad Z; Skagseth S; Boomgaren M; Akhter S; Fröhlich C; Ismael A; Christopeit T; Bayer A; Leiros HS
    Bioorg Med Chem; 2020 Aug; 28(15):115598. PubMed ID: 32631568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fragment-based discovery of inhibitor scaffolds targeting the metallo-β-lactamases NDM-1 and VIM-2.
    Christopeit T; Leiros HK
    Bioorg Med Chem Lett; 2016 Apr; 26(8):1973-7. PubMed ID: 26976213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of 2-Sulfinyl-Diazabicyclooctane Derivatives, Potential Oral β-Lactamase Inhibitors for Infections Caused by Serine β-Lactamase-Producing Enterobacterales.
    Fujiu M; Yokoo K; Sato J; Shibuya S; Komano K; Kusano H; Sato S; Aoki T; Kohira N; Kanazawa S; Watari R; Kawachi T; Hirakawa Y; Nagamatsu D; Kashiwagi E; Maki H; Yamawaki K
    J Med Chem; 2021 Jul; 64(13):9496-9512. PubMed ID: 34143627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.