These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

914 related articles for article (PubMed ID: 34183009)

  • 1. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer.
    Yang B; Zhou L; Zhong J; Lv T; Li A; Ma L; Zhong J; Yin S; Huang L; Zhou C; Li X; Ge YQ; Tao X; Zhang L; Son Y; Lu G
    Respir Res; 2021 Jun; 22(1):189. PubMed ID: 34183009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive radiomic biomarkers for predicting pseudoprogression and hyperprogression in patients with non-small cell lung cancer treated with immune checkpoint inhibition.
    Li Y; Wang P; Xu J; Shi X; Yin T; Teng F
    Oncoimmunology; 2024; 13(1):2312628. PubMed ID: 38343749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics.
    Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K
    Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of a Radiomics Nomogram Using Computed Tomography for Differentiating Immune Checkpoint Inhibitor-Related Pneumonitis From Radiation Pneumonitis for Patients With Non-Small Cell Lung Cancer.
    Qiu Q; Xing L; Wang Y; Feng A; Wen Q
    Front Immunol; 2022; 13():870842. PubMed ID: 35558076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Machine Learning-Based Model Using CT Radiomics for Predicting Immune Checkpoint Inhibitor-related Pneumonitis in Patients With NSCLC Receiving Anti-PD1 Immunotherapy: A Multicenter Retrospective CaseControl Study.
    Zhang GY; Du XZ; Xu R; Chen T; Wu Y; Wu XJ; Liu S
    Acad Radiol; 2024 May; 31(5):2128-2143. PubMed ID: 37977890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics of
    Mu W; Tunali I; Gray JE; Qi J; Schabath MB; Gillies RJ
    Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1168-1182. PubMed ID: 31807885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the efficacy of immune checkpoint inhibitors monotherapy in advanced non-small cell lung cancer: a machine learning method based on multidimensional data.
    Liu N; Liang BL; Lu L; Zhang BQ; Sun JJ; Yang JT; Xu J; Song ZB; Shi L
    Neoplasma; 2023 Apr; 70(2):300-310. PubMed ID: 36812231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics predicts risk of cachexia in advanced NSCLC patients treated with immune checkpoint inhibitors.
    Mu W; Katsoulakis E; Whelan CJ; Gage KL; Schabath MB; Gillies RJ
    Br J Cancer; 2021 Jul; 125(2):229-239. PubMed ID: 33828255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT radiomics-based model for predicting TMB and immunotherapy response in non-small cell lung cancer.
    Wang J; Wang J; Huang X; Zhou Y; Qi J; Sun X; Nie J; Hu Z; Wang S; Hong B; Wang H
    BMC Med Imaging; 2024 Feb; 24(1):45. PubMed ID: 38360550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CT-based nomogram for early identification of T790M resistance in metastatic non-small cell lung cancer before first-line epidermal growth factor receptor-tyrosine kinase inhibitors therapy.
    Li Y; Lv X; Wang Y; Xu Z; Lv Y; Hou D
    Eur Radiol Exp; 2023 Nov; 7(1):64. PubMed ID: 37914925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy.
    Wang F; Yang H; Chen W; Ruan L; Jiang T; Cheng L; Jiang H; Fang M
    Curr Probl Cancer; 2024 Jun; 50():101098. PubMed ID: 38704949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer.
    Gong J; Bao X; Wang T; Liu J; Peng W; Shi J; Wu F; Gu Y
    Oncoimmunology; 2022; 11(1):2028962. PubMed ID: 35096486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing immune checkpoint inhibitor-related pneumonitis from radiation pneumonitis by CT radiomics features in non-small cell lung cancer.
    Peiliang Wang MD; Yikun Li MM; Mengyu Zhao MM; Jinming Yu MD; Feifei Teng MD
    Int Immunopharmacol; 2024 Feb; 128():111489. PubMed ID: 38266450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction.
    Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M
    Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of an MRI-Based nomogram to predict the effectiveness of immunotherapy for brain metastasis in patients with non-small cell lung cancer.
    Xu J; Wang P; Li Y; Shi X; Yin T; Yu J; Teng F
    Front Immunol; 2024; 15():1373330. PubMed ID: 38686383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Radiomics Nomogram Based on
    Yang B; Zhong J; Zhong J; Ma L; Li A; Ji H; Zhou C; Duan S; Wang Q; Zhu C; Tian J; Zhang L; Wang F; Zhu H; Lu G
    Front Oncol; 2020; 10():1042. PubMed ID: 32766134
    [No Abstract]   [Full Text] [Related]  

  • 17. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade.
    Vaidya P; Bera K; Patil PD; Gupta A; Jain P; Alilou M; Khorrami M; Velcheti V; Madabhushi A
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33051342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using MRI radiomics to predict the efficacy of immunotherapy for brain metastasis in patients with small cell lung cancer.
    Shi X; Wang P; Li Y; Xu J; Yin T; Teng F
    Thorac Cancer; 2024 Mar; 15(9):738-748. PubMed ID: 38376861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images.
    Tian P; He B; Mu W; Liu K; Liu L; Zeng H; Liu Y; Jiang L; Zhou P; Huang Z; Dong D; Li W
    Theranostics; 2021; 11(5):2098-2107. PubMed ID: 33500713
    [No Abstract]   [Full Text] [Related]  

  • 20. Tumor-infiltrating lymphocyte enrichment predicted by CT radiomics analysis is associated with clinical outcomes of non-small cell lung cancer patients receiving immune checkpoint inhibitors.
    Park C; Jeong DY; Choi Y; Oh YJ; Kim J; Ryu J; Paeng K; Lee SH; Ock CY; Lee HY
    Front Immunol; 2022; 13():1038089. PubMed ID: 36660547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.